Solution 2.1:1a

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
(Ny sida: {{NAVCONTENT_START}} <center> Bild:2_1_1a.gif </center> {{NAVCONTENT_STOP}})
Current revision (12:04, 21 October 2008) (edit) (undo)
m
 
(4 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
The value of the integral can be interpreted as the area under the graph <math>y=2</math> from <math>x=-1\ </math> to <math>x=2</math>.
-
<center> [[Bild:2_1_1a.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
[[Image:2_1_1_a.gif|center]]
 +
 
 +
Because the region is a rectangle, we can determine its area directly and obtain
 +
 
 +
{{Displayed math||<math>\int\limits_{-1}^{2} 2\,dx = \text{(base)}\cdot\text{(height)} = 3\cdot 2 = 6\,\textrm{.}</math>}}

Current revision

The value of the integral can be interpreted as the area under the graph \displaystyle y=2 from \displaystyle x=-1\ to \displaystyle x=2.

Because the region is a rectangle, we can determine its area directly and obtain

\displaystyle \int\limits_{-1}^{2} 2\,dx = \text{(base)}\cdot\text{(height)} = 3\cdot 2 = 6\,\textrm{.}