Solution 2.2:4d

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
Current revision (15:36, 28 October 2008) (edit) (undo)
m
 
Line 1: Line 1:
-
The integral can be simplified by a so-called polynomial division. We add and take away
+
The integral can be simplified by a so-called polynomial division. We add and take away 1 in the numerator and can thus eliminate the <math>x^2</math>-term from the numerator
-
<math>\text{1}</math>
+
-
in the numerator and can thus eliminate the
+
-
<math>x^{2}</math>
+
-
-term from the numerator
+
-
 
+
-
 
+
-
<math>\frac{x^{2}}{x^{2}+1}=\frac{x^{2}+1-1}{x^{2}+1}=\frac{x^{2}+1}{x^{2}+1}-\frac{1}{x^{2}+1}=1-\frac{1}{x^{2}+1}</math>
+
 +
{{Displayed math||<math>\frac{x^2}{x^{2}+1} = \frac{x^2+1-1}{x^2+1} = \frac{x^2+1}{x^2+1} - \frac{1}{x^2+1} = 1-\frac{1}{x^2+1}\,\textrm{.}</math>}}
Thus, we have
Thus, we have
-
 
+
{{Displayed math||<math>\int\frac{x^2}{x^2+1}\,dx = \int\Bigl(1-\frac{1}{x^2+1} \Bigr)\,dx = x-\arctan x+C\,\textrm{.}</math>}}
-
<math>\int{\frac{x^{2}}{x^{2}+1}\,dx=\int{\left( 1-\frac{1}{x^{2}+1} \right)}}\,dx=x-\arctan x+C</math>
+

Current revision

The integral can be simplified by a so-called polynomial division. We add and take away 1 in the numerator and can thus eliminate the \displaystyle x^2-term from the numerator

\displaystyle \frac{x^2}{x^{2}+1} = \frac{x^2+1-1}{x^2+1} = \frac{x^2+1}{x^2+1} - \frac{1}{x^2+1} = 1-\frac{1}{x^2+1}\,\textrm{.}

Thus, we have

\displaystyle \int\frac{x^2}{x^2+1}\,dx = \int\Bigl(1-\frac{1}{x^2+1} \Bigr)\,dx = x-\arctan x+C\,\textrm{.}