Solution 3.4:1d

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
m (Lösning 3.4:1d moved to Solution 3.4:1d: Robot: moved page)
Current revision (12:29, 31 October 2008) (edit) (undo)
m
 
(One intermediate revision not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
We start by adding and taking away <math>x^2</math> in the numerator, so that, in combination with <math>x^3</math>, we obtain the expression <math>x^3+x^2 = x^2(x+1)</math> which can be simplified with the denominator <math>x+1</math>,
-
<center> [[Image:3_4_1d.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>\begin{align}
 +
\frac{x^3+x+2}{x+1}
 +
&= \frac{x^3+x^2-x^2+x+2}{x+1}\\[5pt]
 +
&= \frac{x^3+x^2}{x+1} + \frac{-x^2+x+2}{x+1}\\[5pt]
 +
&= \frac{x^2(x+1)}{x+1} + \frac{-x^2+x+2}{x+1}\\[5pt]
 +
&= x^2 + \frac{-x^2+x+2}{x+1}\,\textrm{.}
 +
\end{align}</math>}}
 +
 
 +
The term <math>-x^2</math> in the remaining quotient needs to complemented with
 +
<math>-x</math> so that we get <math>-x^2-x = -x(x+1)</math>, which is divisible by
 +
<math>x+1</math>,
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
x^2 + \frac{-x^2+x+2}{x+1}
 +
&= x^2 + \frac{-x^2-x+x+x+2}{x+1}\\[5pt]
 +
&= x^2 + \frac{-x^2-x}{x+1} + \frac{2x+2}{x+1}\\[5pt]
 +
&= x^2 + \frac{-x(x+1)}{x+1} + \frac{2x+2}{x+1}\\[5pt]
 +
&= x^2 - x + \frac{2x+2}{x+1}\,\textrm{.}
 +
\end{align}</math>}}
 +
 
 +
The last quotient divides perfectly and we obtain
 +
 
 +
{{Displayed math||<math>x^2-x+\frac{2x+2}{x+1}=x^2-x+2\,\textrm{.}</math>}}
 +
 
 +
A quick check of whether
 +
 
 +
{{Displayed math||<math>\frac{x^3+x+2}{x+1} = x^2-x+2\,\textrm{.}</math>}}
 +
 
 +
is the correct answer is to investigate whether
 +
 
 +
{{Displayed math||<math>x^3+x+2 = (x^2-x+2)(x+1)</math>}}
 +
 
 +
holds. If we expand the right-hand side, we see that the relation really does hold
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
(x^2-x+2)(x+1) = x^3+x^2-x^2-x+2x+2 = x^3+x+2\,\textrm{.}
 +
\end{align}</math>}}

Current revision

We start by adding and taking away \displaystyle x^2 in the numerator, so that, in combination with \displaystyle x^3, we obtain the expression \displaystyle x^3+x^2 = x^2(x+1) which can be simplified with the denominator \displaystyle x+1,

\displaystyle \begin{align}

\frac{x^3+x+2}{x+1} &= \frac{x^3+x^2-x^2+x+2}{x+1}\\[5pt] &= \frac{x^3+x^2}{x+1} + \frac{-x^2+x+2}{x+1}\\[5pt] &= \frac{x^2(x+1)}{x+1} + \frac{-x^2+x+2}{x+1}\\[5pt] &= x^2 + \frac{-x^2+x+2}{x+1}\,\textrm{.} \end{align}

The term \displaystyle -x^2 in the remaining quotient needs to complemented with \displaystyle -x so that we get \displaystyle -x^2-x = -x(x+1), which is divisible by \displaystyle x+1,

\displaystyle \begin{align}

x^2 + \frac{-x^2+x+2}{x+1} &= x^2 + \frac{-x^2-x+x+x+2}{x+1}\\[5pt] &= x^2 + \frac{-x^2-x}{x+1} + \frac{2x+2}{x+1}\\[5pt] &= x^2 + \frac{-x(x+1)}{x+1} + \frac{2x+2}{x+1}\\[5pt] &= x^2 - x + \frac{2x+2}{x+1}\,\textrm{.} \end{align}

The last quotient divides perfectly and we obtain

\displaystyle x^2-x+\frac{2x+2}{x+1}=x^2-x+2\,\textrm{.}

A quick check of whether

\displaystyle \frac{x^3+x+2}{x+1} = x^2-x+2\,\textrm{.}

is the correct answer is to investigate whether

\displaystyle x^3+x+2 = (x^2-x+2)(x+1)

holds. If we expand the right-hand side, we see that the relation really does hold

\displaystyle \begin{align}

(x^2-x+2)(x+1) = x^3+x^2-x^2-x+2x+2 = x^3+x+2\,\textrm{.} \end{align}