Solution 3.4:1c

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
m (Lösning 3.4:1c moved to Solution 3.4:1c: Robot: moved page)
Current revision (12:11, 31 October 2008) (edit) (undo)
m
 
(One intermediate revision not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
If we focus on the leading term <math>x^3</math>, we need to complement it with <math>ax^2</math> in order to get a sub expression that is divisible by the denominator,
-
<center> [[Image:3_4_1c.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>\frac{x^3+a^3}{x+a} = \frac{x^3+ax^2-ax^2+a^3}{x+a}\,\textrm{.}</math>}}
 +
 
 +
With this form on the right-hand side, we can separate away the first two terms in the numerator and have left a polynomial quotient with <math>-ax^2+a^3</math> in the numerator,
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
\frac{x^3+ax^2-ax^2+a^3}{x+a}
 +
&= \frac{x^3+ax^2}{x+a} + \frac{-ax^2+a^3}{x+a}\\[5pt]
 +
&= \frac{x^2(x+a)}{x+a} + \frac{-ax^2+a^3}{x+a}\\[5pt]
 +
&= x^2 + \frac{-ax^2+a^3}{x+a}\,\textrm{.}
 +
\end{align}</math>}}
 +
 
 +
When we treat the new quotient, we add and take away <math>-a^2x</math> to/from <math>-ax^2</math> in order to get something divisible by <math>x+a</math>,
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
x^2+\frac{-ax^2+a^3}{x+a}
 +
&= x^2 + \frac{-ax^2-a^2x+a^2x+a^3}{x+a}\\[5pt]
 +
&= x^2 + \frac{-ax^2-a^2x}{x+a} + \frac{a^2x+a^3}{x+a}\\[5pt]
 +
&= x^2 + \frac{-ax(x+a)}{x+a} + \frac{a^2x+a^3}{x+a}\\[5pt]
 +
&= x^2 - ax + \frac{a^2x+a^3}{x+a}\,\textrm{.}
 +
\end{align}</math>}}
 +
 
 +
In the last quotient, the numerator has <math>x+a</math> as a factor, and we obtain a perfect division,
 +
 
 +
{{Displayed math||<math>x^2 - ax + \frac{a^2x+a^3}{x+a} = x^2 - ax + \frac{a^2(x+a)}{x+a} = x^2-ax+a^2\,\textrm{.}</math>}}
 +
 
 +
If we have calculated correctly, we should have
 +
 
 +
{{Displayed math||<math>\frac{x^3+a^3}{x+a} = x^2-ax+a^2</math>}}
 +
 
 +
and one way to check the answer is to multiply both sides by <math>x+a</math>,
 +
 
 +
{{Displayed math||<math>x^3+a^3 = (x^2-ax+a^2)(x+a)\,\textrm{.}</math>}}
 +
 
 +
Then, expand the right-hand side and we should get what is on the left-hand side,
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
\text{RHS}
 +
&= (x^2-ax+a^2)(x+a)\\[5pt]
 +
&= x^3+ax^2-ax^2-a^2x+a^2x+a^3\\[5pt]
 +
&= x^3+a^3\\[5pt]
 +
&= \text{LHS.}
 +
\end{align}</math>}}

Current revision

If we focus on the leading term \displaystyle x^3, we need to complement it with \displaystyle ax^2 in order to get a sub expression that is divisible by the denominator,

\displaystyle \frac{x^3+a^3}{x+a} = \frac{x^3+ax^2-ax^2+a^3}{x+a}\,\textrm{.}

With this form on the right-hand side, we can separate away the first two terms in the numerator and have left a polynomial quotient with \displaystyle -ax^2+a^3 in the numerator,

\displaystyle \begin{align}

\frac{x^3+ax^2-ax^2+a^3}{x+a} &= \frac{x^3+ax^2}{x+a} + \frac{-ax^2+a^3}{x+a}\\[5pt] &= \frac{x^2(x+a)}{x+a} + \frac{-ax^2+a^3}{x+a}\\[5pt] &= x^2 + \frac{-ax^2+a^3}{x+a}\,\textrm{.} \end{align}

When we treat the new quotient, we add and take away \displaystyle -a^2x to/from \displaystyle -ax^2 in order to get something divisible by \displaystyle x+a,

\displaystyle \begin{align}

x^2+\frac{-ax^2+a^3}{x+a} &= x^2 + \frac{-ax^2-a^2x+a^2x+a^3}{x+a}\\[5pt] &= x^2 + \frac{-ax^2-a^2x}{x+a} + \frac{a^2x+a^3}{x+a}\\[5pt] &= x^2 + \frac{-ax(x+a)}{x+a} + \frac{a^2x+a^3}{x+a}\\[5pt] &= x^2 - ax + \frac{a^2x+a^3}{x+a}\,\textrm{.} \end{align}

In the last quotient, the numerator has \displaystyle x+a as a factor, and we obtain a perfect division,

\displaystyle x^2 - ax + \frac{a^2x+a^3}{x+a} = x^2 - ax + \frac{a^2(x+a)}{x+a} = x^2-ax+a^2\,\textrm{.}

If we have calculated correctly, we should have

\displaystyle \frac{x^3+a^3}{x+a} = x^2-ax+a^2

and one way to check the answer is to multiply both sides by \displaystyle x+a,

\displaystyle x^3+a^3 = (x^2-ax+a^2)(x+a)\,\textrm{.}

Then, expand the right-hand side and we should get what is on the left-hand side,

\displaystyle \begin{align}

\text{RHS} &= (x^2-ax+a^2)(x+a)\\[5pt] &= x^3+ax^2-ax^2-a^2x+a^2x+a^3\\[5pt] &= x^3+a^3\\[5pt] &= \text{LHS.} \end{align}