Solution 3.2:4d

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
m (Lösning 3.2:4d moved to Solution 3.2:4d: Robot: moved page)
Current revision (12:16, 29 October 2008) (edit) (undo)
m
 
(One intermediate revision not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
For magnitudes of quotients, we have the arithmetical rule
-
<center> [[Image:3_2_4d.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>\left|\frac{z}{w}\right| = \frac{|z|}{|w|}\,\textrm{.}</math>}}
 +
 
 +
We can therefore take the magnitude of the numerator and denominator separately and then divide the magnitudes by each other,
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
\left|\frac{3-4i}{3+2i}\right|
 +
&= \frac{|3-4i|}{|3+2i|}
 +
= \frac{\sqrt{3^2+(-4)^2}}{\sqrt{3^2+2^2}}
 +
= \frac{\sqrt{9+16}}{\sqrt{9+4}}
 +
= \frac{\sqrt{25}}{\sqrt{13}}
 +
= \frac{5}{\sqrt{13}}\,\textrm{.}
 +
\end{align}</math>}}

Current revision

For magnitudes of quotients, we have the arithmetical rule

\displaystyle \left|\frac{z}{w}\right| = \frac{|z|}{|w|}\,\textrm{.}

We can therefore take the magnitude of the numerator and denominator separately and then divide the magnitudes by each other,

\displaystyle \begin{align}

\left|\frac{3-4i}{3+2i}\right| &= \frac{|3-4i|}{|3+2i|} = \frac{\sqrt{3^2+(-4)^2}}{\sqrt{3^2+2^2}} = \frac{\sqrt{9+16}}{\sqrt{9+4}} = \frac{\sqrt{25}}{\sqrt{13}} = \frac{5}{\sqrt{13}}\,\textrm{.} \end{align}