Solution 3.2:4c
From Förberedande kurs i matematik 2
(Difference between revisions)
m (Lösning 3.2:4c moved to Solution 3.2:4c: Robot: moved page) |
m |
||
(One intermediate revision not shown.) | |||
Line 1: | Line 1: | ||
- | {{ | + | One way to determine the magnitude is to calculate the product <math>(3-4i)(3+2i)</math> and then to take the magnitude of the result, but for products we have that |
- | < | + | |
- | {{ | + | {{Displayed math||<math>|zw| = |z|\cdot |w|</math>}} |
+ | |||
+ | and we can take the magnitude of the factors <math>3-4i</math> and <math>3+2i</math> and then multiply the magnitudes together, | ||
+ | |||
+ | {{Displayed math||<math>\begin{align} | ||
+ | |(3-4i)(3+2i)| | ||
+ | &= |3-4i|\cdot |3+2i|\\[5pt] | ||
+ | &= \sqrt{3^2+(-4)^2}\cdot\sqrt{3^2+2^2}\\[5pt] | ||
+ | &= \sqrt{9+16}\sqrt{9+4}\\[5pt] | ||
+ | &= \sqrt{25}\sqrt{13}\\[5pt] | ||
+ | &= 5\sqrt{13}\,\textrm{.} | ||
+ | \end{align}</math>}} |
Current revision
One way to determine the magnitude is to calculate the product \displaystyle (3-4i)(3+2i) and then to take the magnitude of the result, but for products we have that
\displaystyle |zw| = |z|\cdot |w| |
and we can take the magnitude of the factors \displaystyle 3-4i and \displaystyle 3+2i and then multiply the magnitudes together,
\displaystyle \begin{align}
|(3-4i)(3+2i)| &= |3-4i|\cdot |3+2i|\\[5pt] &= \sqrt{3^2+(-4)^2}\cdot\sqrt{3^2+2^2}\\[5pt] &= \sqrt{9+16}\sqrt{9+4}\\[5pt] &= \sqrt{25}\sqrt{13}\\[5pt] &= 5\sqrt{13}\,\textrm{.} \end{align} |