Solution 3.2:4b
From Förberedande kurs i matematik 2
(Difference between revisions)
m (Lösning 3.2:4b moved to Solution 3.2:4b: Robot: moved page) |
m |
||
(One intermediate revision not shown.) | |||
Line 1: | Line 1: | ||
- | {{ | + | We calculate what the expression will be |
- | < | + | |
- | {{ | + | {{Displayed math||<math>(2-i)+(5+3i) = 2+5+(-1+3)i = 7+2i</math>}} |
+ | |||
+ | and then calculate the magnitude, | ||
+ | |||
+ | {{Displayed math||<math>|7+2i| = \sqrt{7^2+2^2} = \sqrt{49+4} = \sqrt{53}\,\textrm{.}</math>}} | ||
+ | |||
+ | |||
+ | Note: It is not possible to calculate the magnitude of the terms individually | ||
+ | |||
+ | {{Displayed math||<math>|(2-i)+(5+3i)| \ne |2-i| + |5+3i|\,\textrm{.}</math>}} |
Current revision
We calculate what the expression will be
\displaystyle (2-i)+(5+3i) = 2+5+(-1+3)i = 7+2i |
and then calculate the magnitude,
\displaystyle |7+2i| = \sqrt{7^2+2^2} = \sqrt{49+4} = \sqrt{53}\,\textrm{.} |
Note: It is not possible to calculate the magnitude of the terms individually
\displaystyle |(2-i)+(5+3i)| \ne |2-i| + |5+3i|\,\textrm{.} |