Solution 1.2:3d

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
(Ny sida: {{NAVCONTENT_START}} <center> Bild:1_2_3d.gif </center> {{NAVCONTENT_STOP}})
Current revision (13:04, 15 October 2008) (edit) (undo)
m
 
(3 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
We differentiate the function successively, one part at a time,
-
<center> [[Bild:1_2_3d.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>\frac{d}{dx}\,\sin \bbox[#FFEEAA;,1.5pt]{\cos\sin x} = \cos \bbox[#FFEEAA;,1.5pt]{\cos\sin x}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\cos\sin x}\bigr)'\,,</math>}}
 +
 
 +
and the next differentiation becomes
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
\frac{d}{dx}\,\cos \bbox[#FFEEAA;,1.5pt]{\sin x}
 +
&= -\sin \bbox[#FFEEAA;,1.5pt]{\sin x}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\sin x}\bigr)'\\[5pt]
 +
&= -\sin \sin x\cdot \cos x\,\textrm{.}
 +
\end{align}</math>}}
 +
 
 +
The answer is thus
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
\frac{d}{dx}\,\sin \cos \sin x
 +
&= \cos \cos \sin x\cdot ( -\sin \sin x\cdot \cos x)\\[5pt]
 +
&= -\cos \cos \sin x\cdot \sin \sin x\cdot \cos x\,\textrm{.}
 +
\end{align}</math>}}

Current revision

We differentiate the function successively, one part at a time,

\displaystyle \frac{d}{dx}\,\sin \bbox[#FFEEAA;,1.5pt]{\cos\sin x} = \cos \bbox[#FFEEAA;,1.5pt]{\cos\sin x}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\cos\sin x}\bigr)'\,,

and the next differentiation becomes

\displaystyle \begin{align}

\frac{d}{dx}\,\cos \bbox[#FFEEAA;,1.5pt]{\sin x} &= -\sin \bbox[#FFEEAA;,1.5pt]{\sin x}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\sin x}\bigr)'\\[5pt] &= -\sin \sin x\cdot \cos x\,\textrm{.} \end{align}

The answer is thus

\displaystyle \begin{align}

\frac{d}{dx}\,\sin \cos \sin x &= \cos \cos \sin x\cdot ( -\sin \sin x\cdot \cos x)\\[5pt] &= -\cos \cos \sin x\cdot \sin \sin x\cdot \cos x\,\textrm{.} \end{align}