Solution 3.2:1b

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
m (Lösning 3.2:1b moved to Solution 3.2:1b: Robot: moved page)
Current revision (09:21, 29 October 2008) (edit) (undo)
m
 
(One intermediate revision not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
We can easily calculate <math>z+u</math> and <math>z-u</math>,
-
<center> [[Image:3_2_1b-1(2).gif]] </center>
+
-
{{NAVCONTENT_STOP}}
+
-
{{NAVCONTENT_START}}
+
-
<center> [[Image:3_2_1b-2(2).gif]] </center>
+
-
{{NAVCONTENT_STOP}}
+
 +
{{Displayed math||<math>\begin{align}
 +
z+u &= 2+i+(-1-2i) = 2-1+(1-2)i = 1-i,\\[5pt]
 +
z-u &= 2+i-(-1-2i) = 2+1+(1+2)i = 3+3i,
 +
\end{align}</math>}}
 +
 +
and then mark them on the complex plane.
 +
 +
An alternative is to view <math>z</math> and <math>u</math> as vectors and <math>z+u</math> as a vector addition of <math>z</math> and <math>u</math>.
[[Image:3_2_1_b1.gif|center]]
[[Image:3_2_1_b1.gif|center]]
 +
 +
We can either view the vector subtraction <math>z-u</math> as <math>z+(-u)</math>,
[[Image:3_2_1_b2.gif|center]]
[[Image:3_2_1_b2.gif|center]]
 +
 +
or interpret <math>z-u</math> from the vector relation
 +
 +
{{Displayed math||<math>z=(z-u)+u\,,</math>}}
 +
 +
i.e. <math>z-u</math> is the vector we add to <math>u</math> to arrive at <math>z</math>.
[[Image:3_2_1_b3.gif|center]]
[[Image:3_2_1_b3.gif|center]]

Current revision

We can easily calculate \displaystyle z+u and \displaystyle z-u,

\displaystyle \begin{align}

z+u &= 2+i+(-1-2i) = 2-1+(1-2)i = 1-i,\\[5pt] z-u &= 2+i-(-1-2i) = 2+1+(1+2)i = 3+3i, \end{align}

and then mark them on the complex plane.

An alternative is to view \displaystyle z and \displaystyle u as vectors and \displaystyle z+u as a vector addition of \displaystyle z and \displaystyle u.

We can either view the vector subtraction \displaystyle z-u as \displaystyle z+(-u),

or interpret \displaystyle z-u from the vector relation

\displaystyle z=(z-u)+u\,,

i.e. \displaystyle z-u is the vector we add to \displaystyle u to arrive at \displaystyle z.