Solution 1.2:4b

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
(Ny sida: {{NAVCONTENT_START}} <center> Bild:1_2_4b-1(2).gif </center> {{NAVCONTENT_STOP}} {{NAVCONTENT_START}} <center> Bild:1_2_4b-2(2).gif </center> {{NAVCONTENT_STOP}})
Current revision (13:58, 15 October 2008) (edit) (undo)
m
 
(3 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
To start with, we determine the first derivative and begin by using the product rule,
-
<center> [[Bild:1_2_4b-1(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>\begin{align}
-
{{NAVCONTENT_START}}
+
\frac{d}{dx}\,\bigl[x(\sin\ln x + \cos\ln x)\bigr]
-
<center> [[Bild:1_2_4b-2(2).gif]] </center>
+
&= (x)'\cdot (\sin\ln x + \cos\ln x) + x\cdot (\sin\ln x + \cos\ln x)'\\[5pt]
-
{{NAVCONTENT_STOP}}
+
&= 1\cdot (\sin\ln x + \cos\ln x) + x\cdot (\sin\ln x + \cos\ln x)'\,\textrm{.}
 +
\end{align}</math>}}
 +
 
 +
We divide up the differentiation of the second term in sections and use the chain rule,
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
(\sin\ln x + \cos\ln x)'
 +
&= (\sin\ln x)' + (\cos\ln x)'\\[5pt]
 +
&= \cos\ln x\cdot (\ln x)' - \sin\ln x\cdot (\ln x)'\\[5pt]
 +
&= \cos\ln x\cdot\frac{1}{x} - \sin\ln x\cdot\frac{1}{x}\,\textrm{.}
 +
\end{align}</math>}}
 +
 
 +
This means that
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
\frac{d}{dx}\,\bigl[x(\sin\ln x + \cos\ln x)\bigr]
 +
&= \sin \ln x + \cos \ln x + \cos \ln x - \sin \ln x\\[5pt]
 +
&= 2\cos \ln x\,\textrm{.}
 +
\end{align}</math>}}
 +
 
 +
The second derivative is
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
\frac{d}{dx}\,2\cos\ln x
 +
&= -2\sin\ln x\cdot (\ln x)'\\[5pt]
 +
&= -2\sin\ln x\cdot \frac{1}{x}\\[5pt]
 +
&= -\frac{2\sin\ln x}{x}\,\textrm{.}
 +
\end{align}</math>}}

Current revision

To start with, we determine the first derivative and begin by using the product rule,

\displaystyle \begin{align}

\frac{d}{dx}\,\bigl[x(\sin\ln x + \cos\ln x)\bigr] &= (x)'\cdot (\sin\ln x + \cos\ln x) + x\cdot (\sin\ln x + \cos\ln x)'\\[5pt] &= 1\cdot (\sin\ln x + \cos\ln x) + x\cdot (\sin\ln x + \cos\ln x)'\,\textrm{.} \end{align}

We divide up the differentiation of the second term in sections and use the chain rule,

\displaystyle \begin{align}

(\sin\ln x + \cos\ln x)' &= (\sin\ln x)' + (\cos\ln x)'\\[5pt] &= \cos\ln x\cdot (\ln x)' - \sin\ln x\cdot (\ln x)'\\[5pt] &= \cos\ln x\cdot\frac{1}{x} - \sin\ln x\cdot\frac{1}{x}\,\textrm{.} \end{align}

This means that

\displaystyle \begin{align}

\frac{d}{dx}\,\bigl[x(\sin\ln x + \cos\ln x)\bigr] &= \sin \ln x + \cos \ln x + \cos \ln x - \sin \ln x\\[5pt] &= 2\cos \ln x\,\textrm{.} \end{align}

The second derivative is

\displaystyle \begin{align}

\frac{d}{dx}\,2\cos\ln x &= -2\sin\ln x\cdot (\ln x)'\\[5pt] &= -2\sin\ln x\cdot \frac{1}{x}\\[5pt] &= -\frac{2\sin\ln x}{x}\,\textrm{.} \end{align}