Solution 3.1:2b

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
m (Lösning 3.1:2b moved to Solution 3.1:2b: Robot: moved page)
Current revision (15:21, 29 October 2008) (edit) (undo)
m
 
(One intermediate revision not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
The two terms do not have the same denominator, so it is not possible to subtract them directly. It is perhaps simplest to calculate each quotient individually and then subtract the result.
-
<center> [[Image:3_1_2b-1(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
We multiply the top and bottom of each fraction by the complex conjugate of its denominator,
-
{{NAVCONTENT_START}}
+
 
-
<center> [[Image:3_1_2b-2(2).gif]] </center>
+
{{Displayed math||<math>\begin{align}
-
{{NAVCONTENT_STOP}}
+
\frac{3i}{4-6i}-\frac{1+i}{3+2i}
 +
&= \frac{3i(4+6i)}{(4-6i)(4+6i)}-\frac{(1+i)(3-2i)}{(3+2i)(3-2i)}\\[5pt]
 +
&= \frac{3i\cdot 4 + 3i\cdot 6i}{4^2-(6i)^2}-\frac{1\cdot 3 - 1\cdot 2i + i \cdot 3 - i\cdot 2i}{3^2-(2i)^2}\\[5pt]
 +
&= \frac{12i + 18i^2}{16+36}-\frac{3 - 2i + 3i - 2i^2}{9+4}\\[5pt]
 +
&= \frac{-18+12i}{52}-\frac{3 +(-2 + 3)i + 2}{13}\\[5pt]
 +
&= \frac{-18+12i}{52}-\frac{5 +i}{13}\,\textrm{.}
 +
\end{align}</math>}}
 +
 
 +
Then, we multiply the top and bottom of the last fraction by 4, so as to give make both fractions have the same denominator, and after that we subtract the numerators,
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
\frac{-18+12i}{52}-\frac{(5 +i)\cdot 4}{13\cdot 4}&=\frac{-18+12i}{52}-\frac{20+4i}{52}\\[5pt]
 +
&= \frac{-18+12i-20-4i}{52}\\[5pt]
 +
&= \frac{-38+8i}{52}\\[5pt]
 +
&= -\frac{19}{26}+\frac{2}{13}\,i\,\textrm{.}
 +
\end{align}</math>}}

Current revision

The two terms do not have the same denominator, so it is not possible to subtract them directly. It is perhaps simplest to calculate each quotient individually and then subtract the result.

We multiply the top and bottom of each fraction by the complex conjugate of its denominator,

\displaystyle \begin{align}

\frac{3i}{4-6i}-\frac{1+i}{3+2i} &= \frac{3i(4+6i)}{(4-6i)(4+6i)}-\frac{(1+i)(3-2i)}{(3+2i)(3-2i)}\\[5pt] &= \frac{3i\cdot 4 + 3i\cdot 6i}{4^2-(6i)^2}-\frac{1\cdot 3 - 1\cdot 2i + i \cdot 3 - i\cdot 2i}{3^2-(2i)^2}\\[5pt] &= \frac{12i + 18i^2}{16+36}-\frac{3 - 2i + 3i - 2i^2}{9+4}\\[5pt] &= \frac{-18+12i}{52}-\frac{3 +(-2 + 3)i + 2}{13}\\[5pt] &= \frac{-18+12i}{52}-\frac{5 +i}{13}\,\textrm{.} \end{align}

Then, we multiply the top and bottom of the last fraction by 4, so as to give make both fractions have the same denominator, and after that we subtract the numerators,

\displaystyle \begin{align}

\frac{-18+12i}{52}-\frac{(5 +i)\cdot 4}{13\cdot 4}&=\frac{-18+12i}{52}-\frac{20+4i}{52}\\[5pt] &= \frac{-18+12i-20-4i}{52}\\[5pt] &= \frac{-38+8i}{52}\\[5pt] &= -\frac{19}{26}+\frac{2}{13}\,i\,\textrm{.} \end{align}