Solution 2.2:4d
From Förberedande kurs i matematik 2
(Difference between revisions)
m (Lösning 2.2:4d moved to Solution 2.2:4d: Robot: moved page) |
m |
||
(One intermediate revision not shown.) | |||
Line 1: | Line 1: | ||
- | {{ | + | The integral can be simplified by a so-called polynomial division. We add and take away 1 in the numerator and can thus eliminate the <math>x^2</math>-term from the numerator |
- | < | + | |
- | {{ | + | {{Displayed math||<math>\frac{x^2}{x^{2}+1} = \frac{x^2+1-1}{x^2+1} = \frac{x^2+1}{x^2+1} - \frac{1}{x^2+1} = 1-\frac{1}{x^2+1}\,\textrm{.}</math>}} |
+ | |||
+ | Thus, we have | ||
+ | |||
+ | {{Displayed math||<math>\int\frac{x^2}{x^2+1}\,dx = \int\Bigl(1-\frac{1}{x^2+1} \Bigr)\,dx = x-\arctan x+C\,\textrm{.}</math>}} |
Current revision
The integral can be simplified by a so-called polynomial division. We add and take away 1 in the numerator and can thus eliminate the \displaystyle x^2-term from the numerator
\displaystyle \frac{x^2}{x^{2}+1} = \frac{x^2+1-1}{x^2+1} = \frac{x^2+1}{x^2+1} - \frac{1}{x^2+1} = 1-\frac{1}{x^2+1}\,\textrm{.} |
Thus, we have
\displaystyle \int\frac{x^2}{x^2+1}\,dx = \int\Bigl(1-\frac{1}{x^2+1} \Bigr)\,dx = x-\arctan x+C\,\textrm{.} |