Solution 2.2:3d
From Förberedande kurs i matematik 2
(Difference between revisions)
m (Lösning 2.2:3d moved to Solution 2.2:3d: Robot: moved page) |
m |
||
(One intermediate revision not shown.) | |||
Line 1: | Line 1: | ||
- | {{ | + | Observe that the derivative of the denominator is, for the most part, equal to the numerator, |
- | < | + | |
- | {{ | + | {{Displayed math||<math>(x^2+2x+2)' = 2x+2 = 2(x+1)</math>}} |
+ | |||
+ | so we can rewrite the integral as | ||
+ | |||
+ | {{Displayed math||<math>\int \frac{\tfrac{1}{2}}{x^2+2x+2}\cdot (x^2+2x+2)'\,dx\,\textrm{.}</math>}} | ||
+ | |||
+ | The substitution <math>u=x^2+2x+2</math> will therefore simplify the integral considerably, | ||
+ | |||
+ | {{Displayed math||<math>\begin{align} | ||
+ | \int \frac{x+1}{x^2+2x+2}\,dx | ||
+ | &= \left\{\begin{align} | ||
+ | u &= x^2+2x+2\\[5pt] | ||
+ | du &= (x^2+2x+2)'\,dx = 2(x+1)\,dx | ||
+ | \end{align}\right\}\\[5pt] | ||
+ | &= \frac{1}{2}\int \frac{du}{u}\\[5pt] | ||
+ | &= \frac{1}{2}\ln |u| + C\\[5pt] | ||
+ | &= \frac{1}{2}\ln |x^2+2x+2| + C\,\textrm{.} | ||
+ | \end{align}</math>}} | ||
+ | |||
+ | |||
+ | Note: By completing the square | ||
+ | |||
+ | {{Displayed math||<math>x^2+2x+2 = (x+1)^2-1^2+2 = (x+1)^2+1</math>}} | ||
+ | |||
+ | we see that <math>x^2+2x+2</math> is always greater than or equal to 1, so we can take away the absolute sign around the argument in <math>\ln</math> and answer with | ||
+ | |||
+ | {{Displayed math||<math>\frac{1}{2}\ln (x^2+2x+2) + C\,\textrm{.}</math>}} |
Current revision
Observe that the derivative of the denominator is, for the most part, equal to the numerator,
\displaystyle (x^2+2x+2)' = 2x+2 = 2(x+1) |
so we can rewrite the integral as
\displaystyle \int \frac{\tfrac{1}{2}}{x^2+2x+2}\cdot (x^2+2x+2)'\,dx\,\textrm{.} |
The substitution \displaystyle u=x^2+2x+2 will therefore simplify the integral considerably,
\displaystyle \begin{align}
\int \frac{x+1}{x^2+2x+2}\,dx &= \left\{\begin{align} u &= x^2+2x+2\\[5pt] du &= (x^2+2x+2)'\,dx = 2(x+1)\,dx \end{align}\right\}\\[5pt] &= \frac{1}{2}\int \frac{du}{u}\\[5pt] &= \frac{1}{2}\ln |u| + C\\[5pt] &= \frac{1}{2}\ln |x^2+2x+2| + C\,\textrm{.} \end{align} |
Note: By completing the square
\displaystyle x^2+2x+2 = (x+1)^2-1^2+2 = (x+1)^2+1 |
we see that \displaystyle x^2+2x+2 is always greater than or equal to 1, so we can take away the absolute sign around the argument in \displaystyle \ln and answer with
\displaystyle \frac{1}{2}\ln (x^2+2x+2) + C\,\textrm{.} |