Solution 2.2:2c

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
m (Lösning 2.2:2c moved to Solution 2.2:2c: Robot: moved page)
Current revision (13:36, 28 October 2008) (edit) (undo)
m
 
(2 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
If we focus on the integrand, then the substitution <math>u=3x+1</math> seems suitable, since we then get <math>\sqrt{u}</math> which we can integrate. There is also no risk involved in using a linear substitution such as <math>u=3x+1</math>, because the relation between <math>dx</math> and <math>du</math> will be a constant factor,
-
<center> [[Image:2_2_2c.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>du = (3x+1)'\,dx = 3\,dx\,,</math>}}
 +
 
 +
which does not cause any problems.
 +
 
 +
We obtain
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
\int\limits_0^5 \sqrt{3x+1}\,dx
 +
&= \left\{\begin{align}
 +
u &= 3x+1\\[5pt]
 +
du &= 3\,dx
 +
\end{align}\right\} = \frac{1}{3}\int\limits_1^{16} \sqrt{u}\,du\\[5pt]
 +
&= \frac{1}{3}\int\limits_1^{16} u^{1/2}\,du = \frac{1}{3}\biggl[\ \frac{u^{1/2+1}}{\tfrac{1}{2}+1}\ \biggr]_1^{16}\\[5pt]
 +
&= \frac{1}{3}\Bigl[\ \frac{2}{3}u\sqrt{u}\ \Bigr]_1^{16} = \frac{2}{9}\bigl( 16\sqrt{16}-1\sqrt{1} \bigr)\\[8pt]
 +
&= \frac{2}{9}\bigl( 16\cdot 4-1 \bigr) = \frac{2\cdot 63}{9} = 14\,\textrm{.}
 +
\end{align}</math>}}

Current revision

If we focus on the integrand, then the substitution \displaystyle u=3x+1 seems suitable, since we then get \displaystyle \sqrt{u} which we can integrate. There is also no risk involved in using a linear substitution such as \displaystyle u=3x+1, because the relation between \displaystyle dx and \displaystyle du will be a constant factor,

\displaystyle du = (3x+1)'\,dx = 3\,dx\,,

which does not cause any problems.

We obtain

\displaystyle \begin{align}

\int\limits_0^5 \sqrt{3x+1}\,dx &= \left\{\begin{align} u &= 3x+1\\[5pt] du &= 3\,dx \end{align}\right\} = \frac{1}{3}\int\limits_1^{16} \sqrt{u}\,du\\[5pt] &= \frac{1}{3}\int\limits_1^{16} u^{1/2}\,du = \frac{1}{3}\biggl[\ \frac{u^{1/2+1}}{\tfrac{1}{2}+1}\ \biggr]_1^{16}\\[5pt] &= \frac{1}{3}\Bigl[\ \frac{2}{3}u\sqrt{u}\ \Bigr]_1^{16} = \frac{2}{9}\bigl( 16\sqrt{16}-1\sqrt{1} \bigr)\\[8pt] &= \frac{2}{9}\bigl( 16\cdot 4-1 \bigr) = \frac{2\cdot 63}{9} = 14\,\textrm{.} \end{align}