Solution 1.3:3e
From Förberedande kurs i matematik 2
m (Lösning 1.3:3e moved to Solution 1.3:3e: Robot: moved page) |
m |
||
(One intermediate revision not shown.) | |||
Line 1: | Line 1: | ||
- | { | + | As always, a function can only have local extreme points at one of the following types of points, |
- | < | + | |
- | {{ | + | # critical points, i.e. where <math>f^{\,\prime}(x)=0</math>, |
- | {{ | + | # points where the function is not differentiable, and |
- | + | # endpoints of the interval of definition. | |
- | {{ | + | |
- | {{ | + | We investigate these three cases. |
- | < | + | |
- | {{ | + | <ol> |
- | { | + | <li>We obtain the critical points by setting the derivative equal to zero, |
- | <center> | + | |
- | {{ | + | {{Displayed math||<math>\begin{align} |
+ | f^{\,\prime}(x) &= (x^2-x-1)'e^x + (x^2-x-1)\bigl(e^x\bigr)^{\prime}\\[5pt] | ||
+ | &= (2x-1)e^x + (x^2-x-1)e^x\\[5pt] | ||
+ | &= (x^2+x-2)e^x\,\textrm{.} | ||
+ | \end{align}</math>}} | ||
+ | |||
+ | This expression for the derivative can only be zero when <math>x^2+x-2=0</math>, because <math>e^x</math> differs from zero for all values of <math>x</math>. We solve the second-degree equation by completing the square, | ||
+ | |||
+ | {{Displayed math||<math>\begin{align} | ||
+ | \Bigl(x+\frac{1}{2}\Bigr)^2 - \Bigl(\frac{1}{2}\Bigr)^2 - 2 &= 0\,,\\[5pt] | ||
+ | \Bigl(x+\frac{1}{2}\Bigr)^2 &= \frac{9}{4}\,,\\[5pt] | ||
+ | x+\frac{1}{2} &= \pm\frac{3}{2}\,, | ||
+ | \end{align}</math>}} | ||
+ | |||
+ | i.e. <math>x=-\tfrac{1}{2}-\tfrac{3}{2}=-2</math> and <math>x=-\tfrac{1}{2}+\tfrac{3}{2}=1</math>. Both of these points lie within the region of definition, <math>-3\le x\le 3\,</math>.</li> | ||
+ | |||
+ | <li>The function is a polynomial <math>x^2-x-1</math> multiplied by the exponential function <math>e^x</math>, and, because both of these functions are differentiable, the product is also a differentiable function, which shows that the function is differentiable everywhere.</li> | ||
+ | |||
+ | <li>The function's region of definition is <math>-3\le x\le 3</math> and the endpoints <math>x=-3</math> and <math>x=3</math> are therefore possible local extreme points.</li> | ||
+ | </ol> | ||
+ | |||
+ | All in all, there are four points <math>x=-3</math>, <math>x=-2</math>, <math>x=1</math> and <math>x=3</math> where the function possibly has local extreme points. | ||
+ | |||
+ | Now, we will write down a table of the sign of the derivative, in order to investigate if the function has local extreme points. | ||
+ | |||
+ | We can factorize the derivative somewhat, | ||
+ | |||
+ | {{Displayed math||<math>f^{\,\prime}(x) = (x^2+x-2)e^x = (x+2)(x-1)e^x\,,</math>}} | ||
+ | |||
+ | since <math>x^2+x-2</math> has zeros at <math>x=-2</math> and <math>x=1</math>. Each individual factor in the derivative has a sign that is given in the table: | ||
+ | |||
+ | |||
+ | {| border="1" cellpadding="5" cellspacing="0" align="center" | ||
+ | |- | ||
+ | |width="50px" align="center" style="background:#efefef;"| <math>x</math> | ||
+ | |width="50px" align="center" style="background:#efefef;"| <math>-3</math> | ||
+ | |style="background:#efefef;"| | ||
+ | |width="50px" align="center" style="background:#efefef;"| <math>-2</math> | ||
+ | |style="background:#efefef;"| | ||
+ | |width="50px" align="center" style="background:#efefef;"| <math>1</math> | ||
+ | |style="background:#efefef;"| | ||
+ | |width="50px" align="center" style="background:#efefef;"| <math>3</math> | ||
+ | |- | ||
+ | |width="50px" align="center"| <math>x+2</math> | ||
+ | |width="50px" align="center"| <math>-</math> | ||
+ | |width="50px" align="center"| <math>-</math> | ||
+ | |width="50px" align="center"| <math>0</math> | ||
+ | |width="50px" align="center"| <math>+</math> | ||
+ | |width="50px" align="center"| <math>+</math> | ||
+ | |width="50px" align="center"| <math>+</math> | ||
+ | |width="50px" align="center"| <math>+</math> | ||
+ | |- | ||
+ | |width="50px" align="center"| <math>x-1</math> | ||
+ | |width="50px" align="center"| <math>-</math> | ||
+ | |width="50px" align="center"| <math>-</math> | ||
+ | |width="50px" align="center"| <math>-</math> | ||
+ | |width="50px" align="center"| <math>-</math> | ||
+ | |width="50px" align="center"| <math>0</math> | ||
+ | |width="50px" align="center"| <math>+</math> | ||
+ | |width="50px" align="center"| <math>+</math> | ||
+ | |- | ||
+ | |width="50px" align="center"| <math>e^x</math> | ||
+ | |width="50px" align="center"| <math>+</math> | ||
+ | |width="50px" align="center"| <math>+</math> | ||
+ | |width="50px" align="center"| <math>+</math> | ||
+ | |width="50px" align="center"| <math>+</math> | ||
+ | |width="50px" align="center"| <math>+</math> | ||
+ | |width="50px" align="center"| <math>+</math> | ||
+ | |width="50px" align="center"| <math>+</math> | ||
+ | |- | ||
+ | |} | ||
+ | |||
+ | |||
+ | The sign of the derivative is the product of these signs and from the derivative's sign we decide which local extreme points we have: | ||
+ | |||
+ | |||
+ | {| border="1" cellpadding="5" cellspacing="0" align="center" | ||
+ | |- | ||
+ | |width="50px" align="center" style="background:#efefef;"| <math>x</math> | ||
+ | |width="50px" align="center" style="background:#efefef;"| <math>-3</math> | ||
+ | |style="background:#efefef;"| | ||
+ | |width="50px" align="center" style="background:#efefef;"| <math>-2</math> | ||
+ | |style="background:#efefef;"| | ||
+ | |width="50px" align="center" style="background:#efefef;"| <math>1</math> | ||
+ | |style="background:#efefef;"| | ||
+ | |width="50px" align="center" style="background:#efefef;"| <math>3</math> | ||
+ | |- | ||
+ | |width="50px" align="center"| <math>f^{\,\prime}(x)</math> | ||
+ | |width="50px" align="center"| | ||
+ | |width="50px" align="center"| <math>+</math> | ||
+ | |width="50px" align="center"| <math>0</math> | ||
+ | |width="50px" align="center"| <math>-</math> | ||
+ | |width="50px" align="center"| <math>0</math> | ||
+ | |width="50px" align="center"| <math>+</math> | ||
+ | |width="50px" align="center"| | ||
+ | |- | ||
+ | |width="50px" align="center"| <math>f(x)</math> | ||
+ | |width="50px" align="center"| <math>11e^{-3}</math> | ||
+ | |width="50px" align="center"| <math>\nearrow</math> | ||
+ | |width="50px" align="center"| <math>5e^{-2}</math> | ||
+ | |width="50px" align="center"| <math>\searrow</math> | ||
+ | |width="50px" align="center"| <math>-e</math> | ||
+ | |width="50px" align="center"| <math>\nearrow</math> | ||
+ | |width="50px" align="center"| <math>5e^3</math> | ||
+ | |- | ||
+ | |} | ||
+ | |||
+ | |||
+ | The function has local minimum points at <math>x=-3</math> and <math>x=1</math>, and local maximum points <math>x=-2</math> and <math>x=3</math>. |
Current revision
As always, a function can only have local extreme points at one of the following types of points,
- critical points, i.e. where \displaystyle f^{\,\prime}(x)=0,
- points where the function is not differentiable, and
- endpoints of the interval of definition.
We investigate these three cases.
- We obtain the critical points by setting the derivative equal to zero,
\displaystyle \begin{align} f^{\,\prime}(x) &= (x^2-x-1)'e^x + (x^2-x-1)\bigl(e^x\bigr)^{\prime}\\[5pt] &= (2x-1)e^x + (x^2-x-1)e^x\\[5pt] &= (x^2+x-2)e^x\,\textrm{.} \end{align}
This expression for the derivative can only be zero when \displaystyle x^2+x-2=0, because \displaystyle e^x differs from zero for all values of \displaystyle x. We solve the second-degree equation by completing the square,
\displaystyle \begin{align} \Bigl(x+\frac{1}{2}\Bigr)^2 - \Bigl(\frac{1}{2}\Bigr)^2 - 2 &= 0\,,\\[5pt] \Bigl(x+\frac{1}{2}\Bigr)^2 &= \frac{9}{4}\,,\\[5pt] x+\frac{1}{2} &= \pm\frac{3}{2}\,, \end{align}
- The function is a polynomial \displaystyle x^2-x-1 multiplied by the exponential function \displaystyle e^x, and, because both of these functions are differentiable, the product is also a differentiable function, which shows that the function is differentiable everywhere.
- The function's region of definition is \displaystyle -3\le x\le 3 and the endpoints \displaystyle x=-3 and \displaystyle x=3 are therefore possible local extreme points.
All in all, there are four points \displaystyle x=-3, \displaystyle x=-2, \displaystyle x=1 and \displaystyle x=3 where the function possibly has local extreme points.
Now, we will write down a table of the sign of the derivative, in order to investigate if the function has local extreme points.
We can factorize the derivative somewhat,
\displaystyle f^{\,\prime}(x) = (x^2+x-2)e^x = (x+2)(x-1)e^x\,, |
since \displaystyle x^2+x-2 has zeros at \displaystyle x=-2 and \displaystyle x=1. Each individual factor in the derivative has a sign that is given in the table:
\displaystyle x | \displaystyle -3 | \displaystyle -2 | \displaystyle 1 | \displaystyle 3 | |||
\displaystyle x+2 | \displaystyle - | \displaystyle - | \displaystyle 0 | \displaystyle + | \displaystyle + | \displaystyle + | \displaystyle + |
\displaystyle x-1 | \displaystyle - | \displaystyle - | \displaystyle - | \displaystyle - | \displaystyle 0 | \displaystyle + | \displaystyle + |
\displaystyle e^x | \displaystyle + | \displaystyle + | \displaystyle + | \displaystyle + | \displaystyle + | \displaystyle + | \displaystyle + |
The sign of the derivative is the product of these signs and from the derivative's sign we decide which local extreme points we have:
\displaystyle x | \displaystyle -3 | \displaystyle -2 | \displaystyle 1 | \displaystyle 3 | |||
\displaystyle f^{\,\prime}(x) | \displaystyle + | \displaystyle 0 | \displaystyle - | \displaystyle 0 | \displaystyle + | ||
\displaystyle f(x) | \displaystyle 11e^{-3} | \displaystyle \nearrow | \displaystyle 5e^{-2} | \displaystyle \searrow | \displaystyle -e | \displaystyle \nearrow | \displaystyle 5e^3 |
The function has local minimum points at \displaystyle x=-3 and \displaystyle x=1, and local maximum points \displaystyle x=-2 and \displaystyle x=3.