Solution 1.2:3d
From Förberedande kurs i matematik 2
(Difference between revisions)
m (Lösning 1.2:3d moved to Solution 1.2:3d: Robot: moved page) |
m |
||
(One intermediate revision not shown.) | |||
Line 1: | Line 1: | ||
- | {{ | + | We differentiate the function successively, one part at a time, |
- | < | + | |
- | {{ | + | {{Displayed math||<math>\frac{d}{dx}\,\sin \bbox[#FFEEAA;,1.5pt]{\cos\sin x} = \cos \bbox[#FFEEAA;,1.5pt]{\cos\sin x}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\cos\sin x}\bigr)'\,,</math>}} |
+ | |||
+ | and the next differentiation becomes | ||
+ | |||
+ | {{Displayed math||<math>\begin{align} | ||
+ | \frac{d}{dx}\,\cos \bbox[#FFEEAA;,1.5pt]{\sin x} | ||
+ | &= -\sin \bbox[#FFEEAA;,1.5pt]{\sin x}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\sin x}\bigr)'\\[5pt] | ||
+ | &= -\sin \sin x\cdot \cos x\,\textrm{.} | ||
+ | \end{align}</math>}} | ||
+ | |||
+ | The answer is thus | ||
+ | |||
+ | {{Displayed math||<math>\begin{align} | ||
+ | \frac{d}{dx}\,\sin \cos \sin x | ||
+ | &= \cos \cos \sin x\cdot ( -\sin \sin x\cdot \cos x)\\[5pt] | ||
+ | &= -\cos \cos \sin x\cdot \sin \sin x\cdot \cos x\,\textrm{.} | ||
+ | \end{align}</math>}} |
Current revision
We differentiate the function successively, one part at a time,
\displaystyle \frac{d}{dx}\,\sin \bbox[#FFEEAA;,1.5pt]{\cos\sin x} = \cos \bbox[#FFEEAA;,1.5pt]{\cos\sin x}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\cos\sin x}\bigr)'\,, |
and the next differentiation becomes
\displaystyle \begin{align}
\frac{d}{dx}\,\cos \bbox[#FFEEAA;,1.5pt]{\sin x} &= -\sin \bbox[#FFEEAA;,1.5pt]{\sin x}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\sin x}\bigr)'\\[5pt] &= -\sin \sin x\cdot \cos x\,\textrm{.} \end{align} |
The answer is thus
\displaystyle \begin{align}
\frac{d}{dx}\,\sin \cos \sin x &= \cos \cos \sin x\cdot ( -\sin \sin x\cdot \cos x)\\[5pt] &= -\cos \cos \sin x\cdot \sin \sin x\cdot \cos x\,\textrm{.} \end{align} |