Solution 1.2:2f

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
(Ny sida: {{NAVCONTENT_START}} <center> Bild:1_2_2f-1(2).gif </center> {{NAVCONTENT_STOP}} {{NAVCONTENT_START}} <center> Bild:1_2_2f-2(2).gif </center> {{NAVCONTENT_STOP}})
Current revision (10:49, 15 October 2008) (edit) (undo)
m
 
(3 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
The entire expression is made up of several levels,
-
<center> [[Bild:1_2_2f-1(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>\cos \bbox[#FFEEAA;,1.5pt]{\sqrt{\bbox[#FFCC33;,1.5pt]{1-x} } }</math>}}
-
{{NAVCONTENT_START}}
+
 
-
<center> [[Bild:1_2_2f-2(2).gif]] </center>
+
and when we differentiate we go from the outside inwards. In the first stage, we consider the expression as "cosine of something",
-
{{NAVCONTENT_STOP}}
+
 
 +
{{Displayed math||<math>\cos \bbox[#FFEEAA;,1.5pt]{\phantom{\sqrt{\bbox[#FFCC33;,1.5pt]{1-x} } } }\,,</math>}}
 +
 
 +
and differentiate this using the chain rule,
 +
 
 +
{{Displayed math||<math>\frac{d}{dx}\,\cos \bbox[#FFEEAA;,1.5pt]{\sqrt{1-x} } = -\sin \bbox[#FFEEAA;,1.5pt]{\sqrt{1-x} }\cdot \bigl(\bbox[#FFEEAA;,1.5pt]{\sqrt{1-x} }\,\bigr)'\,\textrm{.}</math>}}
 +
 
 +
In the next differentiation, we have "the square root of something",
 +
 
 +
{{Displayed math||<math>\bigl( \sqrt{\bbox[#FFCC33;,1.5pt]{1-x}}\,\bigr)' = \frac{1}{2\sqrt{\bbox[#FFCC33;,1.5pt]{1-x}}}\cdot \bbox[#FFCC33;,1.5pt]{(1-x)}^{\,\prime}\,,</math>}}
 +
 
 +
where we have used the differentiation rule,
 +
 
 +
{{Displayed math||<math>\frac{d}{dx}\,\bigl(\sqrt{x}\,\bigr) = \frac{1}{2\sqrt{x}}\,\textrm{.}</math>}}
 +
 
 +
for the outer derivative.
 +
 
 +
The whole differentiation in one go becomes
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
\frac{d}{dx}\cos\sqrt{1-x}
 +
&= -\sin\sqrt{1-x}\cdot\frac{d}{dx}\,\sqrt{1-x}\\[5pt]
 +
&= -\sin\sqrt{1-x}\cdot\frac{1}{2\sqrt{1-x}}\cdot\frac{d}{dx}\,(1-x)\\[5pt]
 +
&= -\sin\sqrt{1-x}\cdot\frac{1}{2\sqrt{1-x}}\cdot (-1)\\[5pt]
 +
&= \frac{\sin\sqrt{1-x}}{2\sqrt{1-x}}\,\textrm{.}
 +
\end{align}</math>}}

Current revision

The entire expression is made up of several levels,

\displaystyle \cos \bbox[#FFEEAA;,1.5pt]{\sqrt{\bbox[#FFCC33;,1.5pt]{1-x} } }

and when we differentiate we go from the outside inwards. In the first stage, we consider the expression as "cosine of something",

\displaystyle \cos \bbox[#FFEEAA;,1.5pt]{\phantom{\sqrt{\bbox[#FFCC33;,1.5pt]{1-x} } } }\,,

and differentiate this using the chain rule,

\displaystyle \frac{d}{dx}\,\cos \bbox[#FFEEAA;,1.5pt]{\sqrt{1-x} } = -\sin \bbox[#FFEEAA;,1.5pt]{\sqrt{1-x} }\cdot \bigl(\bbox[#FFEEAA;,1.5pt]{\sqrt{1-x} }\,\bigr)'\,\textrm{.}

In the next differentiation, we have "the square root of something",

\displaystyle \bigl( \sqrt{\bbox[#FFCC33;,1.5pt]{1-x}}\,\bigr)' = \frac{1}{2\sqrt{\bbox[#FFCC33;,1.5pt]{1-x}}}\cdot \bbox[#FFCC33;,1.5pt]{(1-x)}^{\,\prime}\,,

where we have used the differentiation rule,

\displaystyle \frac{d}{dx}\,\bigl(\sqrt{x}\,\bigr) = \frac{1}{2\sqrt{x}}\,\textrm{.}

for the outer derivative.

The whole differentiation in one go becomes

\displaystyle \begin{align}

\frac{d}{dx}\cos\sqrt{1-x} &= -\sin\sqrt{1-x}\cdot\frac{d}{dx}\,\sqrt{1-x}\\[5pt] &= -\sin\sqrt{1-x}\cdot\frac{1}{2\sqrt{1-x}}\cdot\frac{d}{dx}\,(1-x)\\[5pt] &= -\sin\sqrt{1-x}\cdot\frac{1}{2\sqrt{1-x}}\cdot (-1)\\[5pt] &= \frac{\sin\sqrt{1-x}}{2\sqrt{1-x}}\,\textrm{.} \end{align}