Solution 1.2:2f
From Förberedande kurs i matematik 2
(Difference between revisions)
(Ny sida: {{NAVCONTENT_START}} <center> Bild:1_2_2f-1(2).gif </center> {{NAVCONTENT_STOP}} {{NAVCONTENT_START}} <center> Bild:1_2_2f-2(2).gif </center> {{NAVCONTENT_STOP}}) |
m |
||
(3 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | {{ | + | The entire expression is made up of several levels, |
- | < | + | |
- | {{ | + | {{Displayed math||<math>\cos \bbox[#FFEEAA;,1.5pt]{\sqrt{\bbox[#FFCC33;,1.5pt]{1-x} } }</math>}} |
- | {{ | + | |
- | < | + | and when we differentiate we go from the outside inwards. In the first stage, we consider the expression as "cosine of something", |
- | {{ | + | |
+ | {{Displayed math||<math>\cos \bbox[#FFEEAA;,1.5pt]{\phantom{\sqrt{\bbox[#FFCC33;,1.5pt]{1-x} } } }\,,</math>}} | ||
+ | |||
+ | and differentiate this using the chain rule, | ||
+ | |||
+ | {{Displayed math||<math>\frac{d}{dx}\,\cos \bbox[#FFEEAA;,1.5pt]{\sqrt{1-x} } = -\sin \bbox[#FFEEAA;,1.5pt]{\sqrt{1-x} }\cdot \bigl(\bbox[#FFEEAA;,1.5pt]{\sqrt{1-x} }\,\bigr)'\,\textrm{.}</math>}} | ||
+ | |||
+ | In the next differentiation, we have "the square root of something", | ||
+ | |||
+ | {{Displayed math||<math>\bigl( \sqrt{\bbox[#FFCC33;,1.5pt]{1-x}}\,\bigr)' = \frac{1}{2\sqrt{\bbox[#FFCC33;,1.5pt]{1-x}}}\cdot \bbox[#FFCC33;,1.5pt]{(1-x)}^{\,\prime}\,,</math>}} | ||
+ | |||
+ | where we have used the differentiation rule, | ||
+ | |||
+ | {{Displayed math||<math>\frac{d}{dx}\,\bigl(\sqrt{x}\,\bigr) = \frac{1}{2\sqrt{x}}\,\textrm{.}</math>}} | ||
+ | |||
+ | for the outer derivative. | ||
+ | |||
+ | The whole differentiation in one go becomes | ||
+ | |||
+ | {{Displayed math||<math>\begin{align} | ||
+ | \frac{d}{dx}\cos\sqrt{1-x} | ||
+ | &= -\sin\sqrt{1-x}\cdot\frac{d}{dx}\,\sqrt{1-x}\\[5pt] | ||
+ | &= -\sin\sqrt{1-x}\cdot\frac{1}{2\sqrt{1-x}}\cdot\frac{d}{dx}\,(1-x)\\[5pt] | ||
+ | &= -\sin\sqrt{1-x}\cdot\frac{1}{2\sqrt{1-x}}\cdot (-1)\\[5pt] | ||
+ | &= \frac{\sin\sqrt{1-x}}{2\sqrt{1-x}}\,\textrm{.} | ||
+ | \end{align}</math>}} |
Current revision
The entire expression is made up of several levels,
\displaystyle \cos \bbox[#FFEEAA;,1.5pt]{\sqrt{\bbox[#FFCC33;,1.5pt]{1-x} } } |
and when we differentiate we go from the outside inwards. In the first stage, we consider the expression as "cosine of something",
\displaystyle \cos \bbox[#FFEEAA;,1.5pt]{\phantom{\sqrt{\bbox[#FFCC33;,1.5pt]{1-x} } } }\,, |
and differentiate this using the chain rule,
\displaystyle \frac{d}{dx}\,\cos \bbox[#FFEEAA;,1.5pt]{\sqrt{1-x} } = -\sin \bbox[#FFEEAA;,1.5pt]{\sqrt{1-x} }\cdot \bigl(\bbox[#FFEEAA;,1.5pt]{\sqrt{1-x} }\,\bigr)'\,\textrm{.} |
In the next differentiation, we have "the square root of something",
\displaystyle \bigl( \sqrt{\bbox[#FFCC33;,1.5pt]{1-x}}\,\bigr)' = \frac{1}{2\sqrt{\bbox[#FFCC33;,1.5pt]{1-x}}}\cdot \bbox[#FFCC33;,1.5pt]{(1-x)}^{\,\prime}\,, |
where we have used the differentiation rule,
\displaystyle \frac{d}{dx}\,\bigl(\sqrt{x}\,\bigr) = \frac{1}{2\sqrt{x}}\,\textrm{.} |
for the outer derivative.
The whole differentiation in one go becomes
\displaystyle \begin{align}
\frac{d}{dx}\cos\sqrt{1-x} &= -\sin\sqrt{1-x}\cdot\frac{d}{dx}\,\sqrt{1-x}\\[5pt] &= -\sin\sqrt{1-x}\cdot\frac{1}{2\sqrt{1-x}}\cdot\frac{d}{dx}\,(1-x)\\[5pt] &= -\sin\sqrt{1-x}\cdot\frac{1}{2\sqrt{1-x}}\cdot (-1)\\[5pt] &= \frac{\sin\sqrt{1-x}}{2\sqrt{1-x}}\,\textrm{.} \end{align} |