Solution 1.2:1d

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
(Ny sida: {{NAVCONTENT_START}} <center> Bild:1_2_1d.gif </center> {{NAVCONTENT_STOP}})
Current revision (14:10, 14 October 2008) (edit) (undo)
m
 
(3 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
We have a quotient between <math>\sin x</math> and <math>x</math>, and therefore one way to differentiate the expression is to use the quotient rule,
-
<center> [[Bild:1_2_1d.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>\begin{align}
 +
\Bigl(\frac{\sin x}{x}\Bigr)'
 +
&= \frac{(\sin x)'\cdot x - \sin x\cdot (x)'}{x^2}\\[5pt]
 +
&= \frac{\cos x\cdot x - \sin x\cdot 1}{x^2}\\[5pt]
 +
&= \frac{\cos x}{x} - \frac{\sin x}{x^2}\,\textrm{.}
 +
\end{align}</math>}}
 +
 
 +
It is also possible to see the expression as a product of <math>\sin x</math> and
 +
<math>1/x</math>, and to use the product rule,
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
\Bigl(\sin x\cdot\frac{1}{x}\Bigr)'
 +
&= (\sin x)'\cdot\frac{1}{x} + \sin x\cdot\Bigl(\frac{1}{x}\Bigr)'\\[5pt]
 +
&= \cos x\cdot\frac{1}{x} + \sin x\cdot\Bigl(-\frac{1}{x^2}\Bigr)\\[5pt]
 +
&= \frac{\cos x}{x} - \frac{\sin x}{x^2}\,,
 +
\end{align}</math>}}
 +
 
 +
where we have used
 +
 
 +
{{Displayed math||<math>\Bigl(\frac{1}{x}\Bigr)' = \bigl(x^{-1}\bigr)' = (-1)x^{-1-1} = -1\cdot x^{-2} = -\frac{1}{x^2}\,\textrm{.}</math>}}

Current revision

We have a quotient between \displaystyle \sin x and \displaystyle x, and therefore one way to differentiate the expression is to use the quotient rule,

\displaystyle \begin{align}

\Bigl(\frac{\sin x}{x}\Bigr)' &= \frac{(\sin x)'\cdot x - \sin x\cdot (x)'}{x^2}\\[5pt] &= \frac{\cos x\cdot x - \sin x\cdot 1}{x^2}\\[5pt] &= \frac{\cos x}{x} - \frac{\sin x}{x^2}\,\textrm{.} \end{align}

It is also possible to see the expression as a product of \displaystyle \sin x and \displaystyle 1/x, and to use the product rule,

\displaystyle \begin{align}

\Bigl(\sin x\cdot\frac{1}{x}\Bigr)' &= (\sin x)'\cdot\frac{1}{x} + \sin x\cdot\Bigl(\frac{1}{x}\Bigr)'\\[5pt] &= \cos x\cdot\frac{1}{x} + \sin x\cdot\Bigl(-\frac{1}{x^2}\Bigr)\\[5pt] &= \frac{\cos x}{x} - \frac{\sin x}{x^2}\,, \end{align}

where we have used

\displaystyle \Bigl(\frac{1}{x}\Bigr)' = \bigl(x^{-1}\bigr)' = (-1)x^{-1-1} = -1\cdot x^{-2} = -\frac{1}{x^2}\,\textrm{.}