Solution 3.2:4c

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
m (Robot: Automated text replacement (-[[Bild: +[[Image:))
Current revision (12:05, 29 October 2008) (edit) (undo)
m
 
(2 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
One way to determine the magnitude is to calculate the product <math>(3-4i)(3+2i)</math> and then to take the magnitude of the result, but for products we have that
-
<center> [[Image:3_2_4c.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>|zw| = |z|\cdot |w|</math>}}
 +
 
 +
and we can take the magnitude of the factors <math>3-4i</math> and <math>3+2i</math> and then multiply the magnitudes together,
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
|(3-4i)(3+2i)|
 +
&= |3-4i|\cdot |3+2i|\\[5pt]
 +
&= \sqrt{3^2+(-4)^2}\cdot\sqrt{3^2+2^2}\\[5pt]
 +
&= \sqrt{9+16}\sqrt{9+4}\\[5pt]
 +
&= \sqrt{25}\sqrt{13}\\[5pt]
 +
&= 5\sqrt{13}\,\textrm{.}
 +
\end{align}</math>}}

Current revision

One way to determine the magnitude is to calculate the product \displaystyle (3-4i)(3+2i) and then to take the magnitude of the result, but for products we have that

\displaystyle |zw| = |z|\cdot |w|

and we can take the magnitude of the factors \displaystyle 3-4i and \displaystyle 3+2i and then multiply the magnitudes together,

\displaystyle \begin{align}

|(3-4i)(3+2i)| &= |3-4i|\cdot |3+2i|\\[5pt] &= \sqrt{3^2+(-4)^2}\cdot\sqrt{3^2+2^2}\\[5pt] &= \sqrt{9+16}\sqrt{9+4}\\[5pt] &= \sqrt{25}\sqrt{13}\\[5pt] &= 5\sqrt{13}\,\textrm{.} \end{align}