Solution 3.2:1d

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
m (Robot: Automated text replacement (-[[Bild: +[[Image:))
Current revision (09:31, 29 October 2008) (edit) (undo)
m
 
(2 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
If we calculate the expression, we get the answer at once,
-
<center> [[Image:3_2_1d-1(2).gif]] </center>
+
-
{{NAVCONTENT_STOP}}
+
-
{{NAVCONTENT_START}}
+
-
<center> [[Image:3_2_1d-2(2).gif]] </center>
+
-
{{NAVCONTENT_STOP}}
+
 +
{{Displayed math||<math>\begin{align}
 +
z-\bar{w}+u
 +
&= (2+i)-(2-3i)+(-1-2i)\\[5pt]
 +
&= 2-2-1+(1+3-2)i\\[5pt]
 +
&= -1+2i\,\textrm{.}
 +
\end{align}</math>}}
 +
 +
If, on the other hand, we interpret the expression in terms of vectors, we must first understand the vector <math>\bar{w}</math> geometrically. When we take the complex conjugate of <math>w</math>, we change the sign of the imaginary part, which is the same as reflecting <math>w</math> in the real axis.
[[Image:3_2_1_d1.gif|center]]
[[Image:3_2_1_d1.gif|center]]
 +
 +
We can then construct the expression <math>z-\bar{w}+u</math> one term at a time.
[[Image:3_2_1d-2(2).gif|center]]
[[Image:3_2_1d-2(2).gif|center]]

Current revision

If we calculate the expression, we get the answer at once,

\displaystyle \begin{align}

z-\bar{w}+u &= (2+i)-(2-3i)+(-1-2i)\\[5pt] &= 2-2-1+(1+3-2)i\\[5pt] &= -1+2i\,\textrm{.} \end{align}

If, on the other hand, we interpret the expression in terms of vectors, we must first understand the vector \displaystyle \bar{w} geometrically. When we take the complex conjugate of \displaystyle w, we change the sign of the imaginary part, which is the same as reflecting \displaystyle w in the real axis.

We can then construct the expression \displaystyle z-\bar{w}+u one term at a time.