Solution 3.1:1e
From Förberedande kurs i matematik 2
(Difference between revisions)
m (Robot: Automated text replacement (-[[Bild: +[[Image:)) |
m |
||
(2 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | {{ | + | A suitable first step can be to work out the square term, <math>(2-i)^2</math>, by expanding it, |
- | < | + | |
- | {{ | + | {{Displayed math||<math>\begin{align} |
+ | (2-i)^2 &= 2^2 - 2\cdot 2i + i^2\\[5pt] | ||
+ | &= 4-4i+i^2\\[5pt] | ||
+ | &= 4-4i-1\\[5pt] | ||
+ | &= 3-4i\,\textrm{.} | ||
+ | \end{align}</math>}} | ||
+ | |||
+ | After that, we calculate the remaining product, | ||
+ | |||
+ | {{Displayed math||<math>\begin{align} | ||
+ | (1+i)(3-4i) &= 1\cdot3 - 1\cdot 4i + i\cdot 3 - i\cdot 4i\\[5pt] | ||
+ | &= 3-4i+3i-4i^2\\[5pt] | ||
+ | &= 3+(-4+3)i-4\cdot (-1)\\[5pt] | ||
+ | &= 3-i+4\\[5pt] | ||
+ | &= 7-i\,\textrm{.} | ||
+ | \end{align}</math>}} |
Current revision
A suitable first step can be to work out the square term, \displaystyle (2-i)^2, by expanding it,
\displaystyle \begin{align}
(2-i)^2 &= 2^2 - 2\cdot 2i + i^2\\[5pt] &= 4-4i+i^2\\[5pt] &= 4-4i-1\\[5pt] &= 3-4i\,\textrm{.} \end{align} |
After that, we calculate the remaining product,
\displaystyle \begin{align}
(1+i)(3-4i) &= 1\cdot3 - 1\cdot 4i + i\cdot 3 - i\cdot 4i\\[5pt] &= 3-4i+3i-4i^2\\[5pt] &= 3+(-4+3)i-4\cdot (-1)\\[5pt] &= 3-i+4\\[5pt] &= 7-i\,\textrm{.} \end{align} |