Solution 2.3:2c
From Förberedande kurs i matematik 2
(Difference between revisions)
m (Robot: Automated text replacement (-[[Bild: +[[Image:)) |
m |
||
(2 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | {{ | + | If we use the definition of <math>\tan x</math> and write the integral as |
- | < | + | |
- | {{ | + | {{Displayed math||<math>\int\tan x\,dx = \int\frac{\sin x}{\cos x}\,dx</math>}} |
+ | |||
+ | we see that the numerator <math>\sin x</math> is the derivative of the denominator (apart from the minus sign). Hence, the substitution <math>u=\cos x</math> will work, | ||
+ | |||
+ | {{Displayed math||<math>\begin{align} | ||
+ | \int\frac{\sin x}{\cos x}\,dx | ||
+ | &= \left\{\begin{align} | ||
+ | u &= \cos x\\[5pt] | ||
+ | du &= (\cos x)'\,dx = -\sin x\,dx | ||
+ | \end{align}\right\}\\[5pt] | ||
+ | &= -\int\frac{du}{u}\\[5pt] | ||
+ | &= -\ln |u| + C\\[5pt] | ||
+ | &= -\ln |\cos x| + C\,\textrm{.} | ||
+ | \end{align}</math>}} | ||
+ | |||
+ | |||
+ | Note: <math>-\ln \left| \cos x \right|+C</math> is only a primitive function in intervals in which <math>\cos x\ne 0</math>. |
Current revision
If we use the definition of \displaystyle \tan x and write the integral as
\displaystyle \int\tan x\,dx = \int\frac{\sin x}{\cos x}\,dx |
we see that the numerator \displaystyle \sin x is the derivative of the denominator (apart from the minus sign). Hence, the substitution \displaystyle u=\cos x will work,
\displaystyle \begin{align}
\int\frac{\sin x}{\cos x}\,dx &= \left\{\begin{align} u &= \cos x\\[5pt] du &= (\cos x)'\,dx = -\sin x\,dx \end{align}\right\}\\[5pt] &= -\int\frac{du}{u}\\[5pt] &= -\ln |u| + C\\[5pt] &= -\ln |\cos x| + C\,\textrm{.} \end{align} |
Note: \displaystyle -\ln \left| \cos x \right|+C is only a primitive function in intervals in which \displaystyle \cos x\ne 0.