Solution 2.2:3e

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
m (Robot: Automated text replacement (-[[Bild: +[[Image:))
Current revision (14:53, 28 October 2008) (edit) (undo)
m
 
(2 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
If we differentiate the denominator in the integrand
-
<center> [[Image:2_2_3e.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>(x^2+1)' = 2x</math>}}
 +
 
 +
we obtain almost the same expression as in the numerator; there is a constant 2 which is different. We therefore rewrite the numerator as
 +
 
 +
{{Displayed math||<math>3x = \frac{3}{2}\cdot 2x = \frac{3}{2}\cdot (x^2+1)',</math>}}
 +
 
 +
so the integral can be written as
 +
 
 +
{{Displayed math||<math>\int\frac{\tfrac{3}{2}}{x^2+1}\cdot (x^{2}+1)'\,dx\,,</math>}}
 +
 
 +
and we see that the substitution <math>u=x^2+1</math> can be used to simplify the integral,
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
\int \frac{3x}{x^2+1}\,dx
 +
&= \left\{ \begin{align}
 +
u &= x^2+1\\[5pt]
 +
du &= (x^2+1)'\,dx = 2x\,dx
 +
\end{align}\right\}\\[5pt]
 +
&= \frac{3}{2}\int \frac{du}{u}\\[5pt]
 +
&= \frac{3}{2}\ln |u|+C\\[5pt]
 +
&= \frac{3}{2}\ln |x^{2}+1|+C\\[5pt]
 +
&= \frac{3}{2}\ln (x^{2}+1) + C\,\textrm{.}
 +
\end{align}</math>}}
 +
 
 +
In the last step, we take away the absolute sign around the argument in <math>\ln</math>, because <math>x^2+1</math> is always greater than or equal to 1.

Current revision

If we differentiate the denominator in the integrand

\displaystyle (x^2+1)' = 2x

we obtain almost the same expression as in the numerator; there is a constant 2 which is different. We therefore rewrite the numerator as

\displaystyle 3x = \frac{3}{2}\cdot 2x = \frac{3}{2}\cdot (x^2+1)',

so the integral can be written as

\displaystyle \int\frac{\tfrac{3}{2}}{x^2+1}\cdot (x^{2}+1)'\,dx\,,

and we see that the substitution \displaystyle u=x^2+1 can be used to simplify the integral,

\displaystyle \begin{align}

\int \frac{3x}{x^2+1}\,dx &= \left\{ \begin{align} u &= x^2+1\\[5pt] du &= (x^2+1)'\,dx = 2x\,dx \end{align}\right\}\\[5pt] &= \frac{3}{2}\int \frac{du}{u}\\[5pt] &= \frac{3}{2}\ln |u|+C\\[5pt] &= \frac{3}{2}\ln |x^{2}+1|+C\\[5pt] &= \frac{3}{2}\ln (x^{2}+1) + C\,\textrm{.} \end{align}

In the last step, we take away the absolute sign around the argument in \displaystyle \ln, because \displaystyle x^2+1 is always greater than or equal to 1.