Solution 2.2:2d

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
m (Robot: Automated text replacement (-[[Bild: +[[Image:))
Current revision (13:56, 28 October 2008) (edit) (undo)
m
 
(2 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
What makes the integral not entirely simple is the expression <math>1-x</math> under the root sign, so we try the substitution <math>u=1-x</math>,
-
<center> [[Image:2_2_2d.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>\int\limits_0^1 \sqrt[3]{1-x}\,dx = \left\{ \begin{align}
 +
u &= 1-x\\[5pt]
 +
du &= (1-x)'\,dx = -\,dx
 +
\end{align} \right\} = -\int\limits_1^0 \sqrt[3]{u}\,du\,\textrm{.}</math>}}
 +
 
 +
Note how the new limits of integration go from 1 to 0 (and not the other way around!). It is possible to change the order of the limits if we change sign at the same time, i.e.
 +
 
 +
{{Displayed math||<math>-\int\limits_1^0 \sqrt[3]{u}\,du = +\int\limits_0^1 \sqrt[3]{u}\,du\,\textrm{.}</math>}}
 +
 
 +
All that is now left is routine calculations,
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
\int\limits_0^1 \sqrt[3]{u}\,du
 +
&= \int\limits_0^1 u^{1/3}\,du
 +
= \biggl[\ \frac{u^{1/3+1}}{\tfrac{1}{3}+1}\ \biggr]_0^1\\[5pt]
 +
&= \frac{3}{4}\Bigl[\ u^{4/3}\ \Bigr]_0^1
 +
= \frac{3}{4}\bigl( 1^{4/3}-0^{4/3} \bigr) = \frac{3}{4}\,\textrm{.}
 +
\end{align}</math>}}

Current revision

What makes the integral not entirely simple is the expression \displaystyle 1-x under the root sign, so we try the substitution \displaystyle u=1-x,

\displaystyle \int\limits_0^1 \sqrt[3]{1-x}\,dx = \left\{ \begin{align}

u &= 1-x\\[5pt] du &= (1-x)'\,dx = -\,dx \end{align} \right\} = -\int\limits_1^0 \sqrt[3]{u}\,du\,\textrm{.}

Note how the new limits of integration go from 1 to 0 (and not the other way around!). It is possible to change the order of the limits if we change sign at the same time, i.e.

\displaystyle -\int\limits_1^0 \sqrt[3]{u}\,du = +\int\limits_0^1 \sqrt[3]{u}\,du\,\textrm{.}

All that is now left is routine calculations,

\displaystyle \begin{align}

\int\limits_0^1 \sqrt[3]{u}\,du &= \int\limits_0^1 u^{1/3}\,du = \biggl[\ \frac{u^{1/3+1}}{\tfrac{1}{3}+1}\ \biggr]_0^1\\[5pt] &= \frac{3}{4}\Bigl[\ u^{4/3}\ \Bigr]_0^1 = \frac{3}{4}\bigl( 1^{4/3}-0^{4/3} \bigr) = \frac{3}{4}\,\textrm{.} \end{align}