Solution 2.2:1c

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
m (Robot: Automated text replacement (-[[Bild: +[[Image:))
Current revision (12:48, 28 October 2008) (edit) (undo)
m
 
(2 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
With the given variable substitution, <math>u=x^3</math>, we obtain
-
<center> [[Image:2_2_1c).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>du = \bigl(x^3\bigr)'\,dx = 3x^2\,dx</math>}}
 +
 
 +
and because the integral contains <math>x^2</math> as a factor, we can bundle it together with <math>dx</math> and replace the combination with <math>\tfrac{1}{3}\,du</math>,
 +
 
 +
{{Displayed math||<math>\int e^{x^3}x^2\,dx = \bigl\{\,u=x^3\,\bigr\} = \int e^u\tfrac{1}{3}\,du = \frac{1}{3}e^u + C\,\textrm{.}</math>}}
 +
 
 +
Thus, the answer is
 +
 
 +
{{Displayed math||<math>\int e^{x^3}x^2\,dx = \frac{1}{3}e^{x^3} + C\,,</math>}}
 +
 
 +
where <math>C</math> is an arbitrary constant.

Current revision

With the given variable substitution, \displaystyle u=x^3, we obtain

\displaystyle du = \bigl(x^3\bigr)'\,dx = 3x^2\,dx

and because the integral contains \displaystyle x^2 as a factor, we can bundle it together with \displaystyle dx and replace the combination with \displaystyle \tfrac{1}{3}\,du,

\displaystyle \int e^{x^3}x^2\,dx = \bigl\{\,u=x^3\,\bigr\} = \int e^u\tfrac{1}{3}\,du = \frac{1}{3}e^u + C\,\textrm{.}

Thus, the answer is

\displaystyle \int e^{x^3}x^2\,dx = \frac{1}{3}e^{x^3} + C\,,

where \displaystyle C is an arbitrary constant.