Solution 2.1:2c

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
m (Robot: Automated text replacement (-[[Bild: +[[Image:))
Current revision (12:59, 21 October 2008) (edit) (undo)
m
 
(2 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
If we recall that <math>\sqrt{x} = x^{1/2}</math>, the integral can be written as
-
<center> [[Image:2_1_2c.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>\begin{align}
 +
\int\limits_{4}^{9} \bigl(\sqrt{x}-\frac{1}{\sqrt{x}}\Bigr)\,dx
 +
&= \int\limits_{4}^{9}\Bigl( x^{1/2}-\frac{1}{x^{1/2}}\Bigr)\,dx\\[5pt]
 +
&= \int\limits_{4}^{9}\bigl(x^{1/2} - x^{-1/2}\bigr)\,dx\,\textrm{.}
 +
\end{align}</math>}}
 +
 
 +
This is a standard integral in which the integrand consists of two terms looking like <math>x^n</math>, where <math>n=1/2</math> and <math>n=-1/2\,</math>, respectively.
 +
 
 +
We obtain
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
\int\limits_{4}^{9} \bigl( x^{1/2}-x^{-1/2}\bigr)\,dx
 +
&= \Bigl[\ \frac{x^{1/2+1}}{1/2+1} - \frac{x^{-1/2+1}}{-1/2+1}\ \Bigr]_{4}^{9}\\[5pt]
 +
&= \Bigl[\ \frac{x^{1+1/2}}{3/2} - \frac{x^{1/2}}{1/2}\ \Bigr]_{4}^{9}\\[5pt]
 +
&= \Bigl[\ \frac{2}{3}x\sqrt{x} - 2\sqrt{x}\ \Bigr]_{4}^{9}\\[5pt]
 +
&= \frac{2}{3}\cdot 9\cdot\sqrt{9} - 2\sqrt{9} - \Bigl(\frac{2}{3}\cdot 4\cdot \sqrt{4}-2\sqrt{4} \Bigr)\\[5pt]
 +
&= \frac{2}{3}\cdot 9\cdot 3 - 2\cdot 3 - \Bigl( \frac{2}{3}\cdot 4\cdot 2 - 2\cdot 2 \Bigr)\\[5pt]
 +
&= 18-6-\frac{16}{3}+4\\[5pt]
 +
&= 16-\frac{16}{3}\\[5pt]
 +
&= \frac{16\cdot 3-16}{3}\\[5pt]
 +
&= \frac{32}{3}\,\textrm{.}
 +
\end{align}</math>}}

Current revision

If we recall that \displaystyle \sqrt{x} = x^{1/2}, the integral can be written as

\displaystyle \begin{align}

\int\limits_{4}^{9} \bigl(\sqrt{x}-\frac{1}{\sqrt{x}}\Bigr)\,dx &= \int\limits_{4}^{9}\Bigl( x^{1/2}-\frac{1}{x^{1/2}}\Bigr)\,dx\\[5pt] &= \int\limits_{4}^{9}\bigl(x^{1/2} - x^{-1/2}\bigr)\,dx\,\textrm{.} \end{align}

This is a standard integral in which the integrand consists of two terms looking like \displaystyle x^n, where \displaystyle n=1/2 and \displaystyle n=-1/2\,, respectively.

We obtain

\displaystyle \begin{align}

\int\limits_{4}^{9} \bigl( x^{1/2}-x^{-1/2}\bigr)\,dx &= \Bigl[\ \frac{x^{1/2+1}}{1/2+1} - \frac{x^{-1/2+1}}{-1/2+1}\ \Bigr]_{4}^{9}\\[5pt] &= \Bigl[\ \frac{x^{1+1/2}}{3/2} - \frac{x^{1/2}}{1/2}\ \Bigr]_{4}^{9}\\[5pt] &= \Bigl[\ \frac{2}{3}x\sqrt{x} - 2\sqrt{x}\ \Bigr]_{4}^{9}\\[5pt] &= \frac{2}{3}\cdot 9\cdot\sqrt{9} - 2\sqrt{9} - \Bigl(\frac{2}{3}\cdot 4\cdot \sqrt{4}-2\sqrt{4} \Bigr)\\[5pt] &= \frac{2}{3}\cdot 9\cdot 3 - 2\cdot 3 - \Bigl( \frac{2}{3}\cdot 4\cdot 2 - 2\cdot 2 \Bigr)\\[5pt] &= 18-6-\frac{16}{3}+4\\[5pt] &= 16-\frac{16}{3}\\[5pt] &= \frac{16\cdot 3-16}{3}\\[5pt] &= \frac{32}{3}\,\textrm{.} \end{align}