Solution 2.1:2b

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
m (Robot: Automated text replacement (-[[Bild: +[[Image:))
Current revision (12:45, 21 October 2008) (edit) (undo)
m
 
(2 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
There is no ready made standard formula for a primitive function to our integrand, but if we expand
-
<center> [[Image:2_1_2b.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>\begin{align}
 +
\int\limits_{-1}^{2} (x-2)(x+1)\,dx
 +
&= \int\limits_{-1}^{2} (x^2+x-2x-2)\,dx\\[5pt]
 +
&= \int\limits_{-1}^{2} (x^2-x-2)\,dx
 +
\end{align}</math>}}
 +
 
 +
and write the last integral as
 +
 
 +
{{Displayed math||<math>\int\limits_{-1}^{2} (x^2-x^1-2x^0)\,dx</math>}}
 +
 +
we see that the integrand consists of three terms of the type <math>x^n</math> and we can directly write down a primitive function,
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
\int\limits_{-1}^{2} (x^2-x^1-2x^0)\,dx
 +
&= \Bigl[\ \frac{x^3}{3} - \frac{x^2}{2} - 2\cdot\frac{x}{1}\ \Bigr]_{-1}^{2}\\[5pt]
 +
&= \frac{2^3}{3} - \frac{2^2}{2} - 2\cdot\frac{2}{1} - \Bigl(\frac{(-1)^3}{3} - \frac{(-1)^2}{2} - 2\cdot\frac{(-1)}{1}\Bigr)\\[5pt]
 +
&= \frac{8}{3} - \frac{4}{2} - 4 - \Bigl(-\frac{1}{3}-\frac{1}{2}+2\Bigr)\\[5pt]
 +
&= \frac{16-12-24+2+3-12}{6}\\[5pt]
 +
&= -\frac{27}{6}\\[5pt]
 +
&= -\frac{9}{2}\,\textrm{.}
 +
\end{align}</math>}}

Current revision

There is no ready made standard formula for a primitive function to our integrand, but if we expand

\displaystyle \begin{align}

\int\limits_{-1}^{2} (x-2)(x+1)\,dx &= \int\limits_{-1}^{2} (x^2+x-2x-2)\,dx\\[5pt] &= \int\limits_{-1}^{2} (x^2-x-2)\,dx \end{align}

and write the last integral as

\displaystyle \int\limits_{-1}^{2} (x^2-x^1-2x^0)\,dx

we see that the integrand consists of three terms of the type \displaystyle x^n and we can directly write down a primitive function,

\displaystyle \begin{align}

\int\limits_{-1}^{2} (x^2-x^1-2x^0)\,dx &= \Bigl[\ \frac{x^3}{3} - \frac{x^2}{2} - 2\cdot\frac{x}{1}\ \Bigr]_{-1}^{2}\\[5pt] &= \frac{2^3}{3} - \frac{2^2}{2} - 2\cdot\frac{2}{1} - \Bigl(\frac{(-1)^3}{3} - \frac{(-1)^2}{2} - 2\cdot\frac{(-1)}{1}\Bigr)\\[5pt] &= \frac{8}{3} - \frac{4}{2} - 4 - \Bigl(-\frac{1}{3}-\frac{1}{2}+2\Bigr)\\[5pt] &= \frac{16-12-24+2+3-12}{6}\\[5pt] &= -\frac{27}{6}\\[5pt] &= -\frac{9}{2}\,\textrm{.} \end{align}