Solution 1.2:3b

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
m (Robot: Automated text replacement (-[[Bild: +[[Image:))
Current revision (11:53, 15 October 2008) (edit) (undo)
 
(2 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
The outer function in the expression is "the square root of something",
-
<center> [[Image:1_2_3b-1(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>\sqrt{\bbox[#FFEEAA;,1.5pt]{\frac{x+1}{x-1} } }</math>}}
-
{{NAVCONTENT_START}}
+
 
-
<center> [[Image:1_2_3b-2(2).gif]] </center>
+
and differentiating with the chain rule gives
-
{{NAVCONTENT_STOP}}
+
 
 +
{{Displayed math||<math>\frac{d}{dx}\,\sqrt{\bbox[#FFEEAA;,1.5pt]{\frac{x+1}{x-1} } } = \frac{1}{2\sqrt{\bbox[#FFEEAA;,1.5pt]{\dfrac{x+1}{x-1} } } }\cdot \Bigl( \frac{x+1}{x-1}\Bigr)'\,\textrm{.}</math>}}
 +
 
 +
We establish the inner derivative by using the quotient rule,
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
\frac{d}{dx}\,\sqrt{\frac{x+1}{x-1}}
 +
&= \frac{1}{2\sqrt{\dfrac{x+1}{x-1}}}\cdot\frac{(x+1)'\cdot (x-1) - (x+1)\cdot (x-1)'}{(x-1)^2}\\[5pt]
 +
&= \frac{1}{2\sqrt{\dfrac{x+1}{x-1}}}\cdot \frac{1\cdot (x-1) - (x+1)\cdot 1}{(x-1)^2}\\[5pt]
 +
&= \frac{1}{2\sqrt{\dfrac{x+1}{x-1}}}\cdot \frac{-2}{(x-1)^2}\\[5pt]
 +
&= -\sqrt{\frac{x-1}{x+1}}\cdot\frac{1}{(x-1)^2}\\[5pt]
 +
&= -\frac{1}{(x-1)^{3/2}\sqrt{x+1}}\,,
 +
\end{align}</math>}}
 +
 
 +
where we have used the simplification
 +
 
 +
{{Displayed math||<math>\frac{\sqrt{x-1}}{(x-1)^2}
 +
= \frac{(x-1)^{1/2}}{(x-1)^2}
 +
= (x-1)^{1/2-2}
 +
= (x-1)^{-3/2}
 +
= \frac{1}{(x-1)^{3/2}}\,\textrm{.}</math>}}

Current revision

The outer function in the expression is "the square root of something",

\displaystyle \sqrt{\bbox[#FFEEAA;,1.5pt]{\frac{x+1}{x-1} } }

and differentiating with the chain rule gives

\displaystyle \frac{d}{dx}\,\sqrt{\bbox[#FFEEAA;,1.5pt]{\frac{x+1}{x-1} } } = \frac{1}{2\sqrt{\bbox[#FFEEAA;,1.5pt]{\dfrac{x+1}{x-1} } } }\cdot \Bigl( \frac{x+1}{x-1}\Bigr)'\,\textrm{.}

We establish the inner derivative by using the quotient rule,

\displaystyle \begin{align}

\frac{d}{dx}\,\sqrt{\frac{x+1}{x-1}} &= \frac{1}{2\sqrt{\dfrac{x+1}{x-1}}}\cdot\frac{(x+1)'\cdot (x-1) - (x+1)\cdot (x-1)'}{(x-1)^2}\\[5pt] &= \frac{1}{2\sqrt{\dfrac{x+1}{x-1}}}\cdot \frac{1\cdot (x-1) - (x+1)\cdot 1}{(x-1)^2}\\[5pt] &= \frac{1}{2\sqrt{\dfrac{x+1}{x-1}}}\cdot \frac{-2}{(x-1)^2}\\[5pt] &= -\sqrt{\frac{x-1}{x+1}}\cdot\frac{1}{(x-1)^2}\\[5pt] &= -\frac{1}{(x-1)^{3/2}\sqrt{x+1}}\,, \end{align}

where we have used the simplification

\displaystyle \frac{\sqrt{x-1}}{(x-1)^2}

= \frac{(x-1)^{1/2}}{(x-1)^2} = (x-1)^{1/2-2} = (x-1)^{-3/2} = \frac{1}{(x-1)^{3/2}}\,\textrm{.}