Solution 3.4:1a
From Förberedande kurs i matematik 2
(Difference between revisions)
(Ny sida: {{NAVCONTENT_START}} <center> Bild:3_4_1a.gif </center> {{NAVCONTENT_STOP}}) |
m |
||
(3 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | + | The numerator can be factorized using the formula for the difference of two squares to give <math>x^2-1=(x+1)(x-1)</math> and then we see that the numerator and denominator have a common factor which we can eliminate | |
- | < | + | |
- | {{ | + | {{Displayed math||<math>\frac{x^{2}-1}{x-1}=\frac{(x+1)(x-1)}{x-1}=x+1\,\textrm{.}</math>}} |
Current revision
The numerator can be factorized using the formula for the difference of two squares to give \displaystyle x^2-1=(x+1)(x-1) and then we see that the numerator and denominator have a common factor which we can eliminate
\displaystyle \frac{x^{2}-1}{x-1}=\frac{(x+1)(x-1)}{x-1}=x+1\,\textrm{.} |