Solution 3.4:1a

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
m (Robot: Automated text replacement (-[[Bild: +[[Image:))
Current revision (11:44, 31 October 2008) (edit) (undo)
m
 
(2 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
The numerator can be factorized using the formula for the difference of two squares to give <math>x^2-1=(x+1)(x-1)</math> and then we see that the numerator and denominator have a common factor which we can eliminate
-
<center> [[Image:3_4_1a.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>\frac{x^{2}-1}{x-1}=\frac{(x+1)(x-1)}{x-1}=x+1\,\textrm{.}</math>}}

Current revision

The numerator can be factorized using the formula for the difference of two squares to give \displaystyle x^2-1=(x+1)(x-1) and then we see that the numerator and denominator have a common factor which we can eliminate

\displaystyle \frac{x^{2}-1}{x-1}=\frac{(x+1)(x-1)}{x-1}=x+1\,\textrm{.}