Solution 3.3:4a
From Förberedande kurs i matematik 2
m (Lösning 3.3:4a moved to Solution 3.3:4a: Robot: moved page) |
m |
||
(One intermediate revision not shown.) | |||
Line 1: | Line 1: | ||
- | {{ | + | This is a typical binomial equation which we solve in polar form. |
- | < | + | |
- | {{ | + | We write |
+ | |||
+ | {{Displayed math||<math>\begin{align} | ||
+ | z &= r(\cos\alpha + i\sin\alpha)\,,\\[5pt] | ||
+ | i &= 1\,\Bigl(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\Bigr)\,, | ||
+ | \end{align}</math>}} | ||
+ | |||
+ | and, on using de Moivre's formula, the equation becomes | ||
+ | |||
+ | {{Displayed math||<math>r^2(\cos 2\alpha + i\sin 2\alpha) = 1\Bigl(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\Bigr)\,\textrm{.}</math>}} | ||
+ | |||
+ | Both sides are equal when | ||
+ | |||
+ | {{Displayed math||<math>\left\{\begin{align} | ||
+ | r^2 &= 1\,,\\[5pt] | ||
+ | 2\alpha &= \frac{\pi}{2}+2n\pi\,,\quad\text{(n is an arbitrary integer),} | ||
+ | \end{align}\right.</math>}} | ||
+ | |||
+ | which gives that | ||
+ | |||
+ | {{Displayed math||<math>\left\{\begin{align} | ||
+ | r &= 1\,,\\[5pt] | ||
+ | \alpha &= \frac{\pi}{4} + n\pi\,,\quad\text{(n is an arbitrary integer).} | ||
+ | \end{align}\right.</math>}} | ||
+ | |||
+ | When <math>n=0</math> and <math>n=1</math>, we get two different arguments for | ||
+ | <math>\alpha</math>, whilst different values of <math>n</math> only give these arguments plus/minus a multiple of <math>2\pi</math>. | ||
+ | |||
+ | The solutions to the equation are | ||
+ | |||
+ | {{Displayed math||<math>z=\left\{\begin{align} | ||
+ | &1\cdot\Bigl(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}\Bigr)\\[5pt] | ||
+ | &1\cdot\Bigl(\cos\frac{3\pi}{4}+i\sin\frac{3\pi}{4}\Bigr) | ||
+ | \end{align}\right. | ||
+ | = | ||
+ | \left\{\begin{align} | ||
+ | &\frac{1+i}{\sqrt{2}}\,,\\[5pt] | ||
+ | &-\frac{1+i}{\sqrt{2}}\,\textrm{.} | ||
+ | \end{align}\right.</math>}} |
Current revision
This is a typical binomial equation which we solve in polar form.
We write
\displaystyle \begin{align}
z &= r(\cos\alpha + i\sin\alpha)\,,\\[5pt] i &= 1\,\Bigl(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\Bigr)\,, \end{align} |
and, on using de Moivre's formula, the equation becomes
\displaystyle r^2(\cos 2\alpha + i\sin 2\alpha) = 1\Bigl(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\Bigr)\,\textrm{.} |
Both sides are equal when
\displaystyle \left\{\begin{align}
r^2 &= 1\,,\\[5pt] 2\alpha &= \frac{\pi}{2}+2n\pi\,,\quad\text{(n is an arbitrary integer),} \end{align}\right. |
which gives that
\displaystyle \left\{\begin{align}
r &= 1\,,\\[5pt] \alpha &= \frac{\pi}{4} + n\pi\,,\quad\text{(n is an arbitrary integer).} \end{align}\right. |
When \displaystyle n=0 and \displaystyle n=1, we get two different arguments for \displaystyle \alpha, whilst different values of \displaystyle n only give these arguments plus/minus a multiple of \displaystyle 2\pi.
The solutions to the equation are
\displaystyle z=\left\{\begin{align}
&1\cdot\Bigl(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}\Bigr)\\[5pt] &1\cdot\Bigl(\cos\frac{3\pi}{4}+i\sin\frac{3\pi}{4}\Bigr) \end{align}\right. = \left\{\begin{align} &\frac{1+i}{\sqrt{2}}\,,\\[5pt] &-\frac{1+i}{\sqrt{2}}\,\textrm{.} \end{align}\right. |