Solution 3.3:3d

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
m (Robot: Automated text replacement (-[[Bild: +[[Image:))
Current revision (14:04, 30 October 2008) (edit) (undo)
m
 
(2 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
Before we can complete the square of the expression, we need to take out the factor
-
<center> [[Image:3_3_3d.gif]] </center>
+
<math>i</math> in front of <math>z^2</math>,
-
{{NAVCONTENT_STOP}}
+
 
 +
{{Displayed math||<math>i\Bigl(z^2+\frac{2+3i}{i}z-\frac{1}{i}\Bigr)\,\textrm{.}</math>}}
 +
 
 +
Then, simplify the complex fractions by multiplying top and bottom by <math>-i</math> (the denominator's complex conjugate),
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
i\Bigl(z^2+\frac{(2+3i)\cdot (-i)}{i\cdot (-i)}z-\frac{1\cdot (-i)}{i\cdot (-i)}\Bigr)
 +
&= i\Bigl(z^2+\frac{-2i+3}{1}z-\frac{-i}{1}\Bigr)\\[5pt]
 +
&= i\bigl(z^2+(3-2i)z+i\bigr)\,\textrm{.}
 +
\end{align}</math>}}
 +
 
 +
Now we are ready to complete the square of the second-degree expression inside the bracket,
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
i\bigl(z^2+(3-2i)z+i\bigr)
 +
&= i\Bigl(\Bigl(z+\frac{3-2i}{2}\Bigr)^2 - \Bigl(\frac{3-2i}{2}\Bigr)^2+i\Bigr)\\[5pt]
 +
&= i\bigl(\bigl(z+\tfrac{3}{2}-i\bigr)^2 - \bigl(\tfrac{3}{2}-i\bigr)^2+i\bigr)\\[5pt]
 +
&= i\bigl(\bigl(z+\tfrac{3}{2}-i\bigr)^2-\tfrac{9}{4}+3i-i^2+i\bigr)\\[5pt]
 +
&= i\bigl(\bigl(z+\tfrac{3}{2}-i\bigr)^2-\frac{5}{4}+4i\bigr)\\[5pt]
 +
&= i\bigl(z+\tfrac{3}{2}-i\bigr)^2-\tfrac{5}{4}i+4i^2\\[5pt]
 +
&= i\bigl(z+\tfrac{3}{2}-i\bigr)^2-4-\tfrac{5}{4}i\,\textrm{.}
 +
\end{align}</math>}}

Current revision

Before we can complete the square of the expression, we need to take out the factor \displaystyle i in front of \displaystyle z^2,

\displaystyle i\Bigl(z^2+\frac{2+3i}{i}z-\frac{1}{i}\Bigr)\,\textrm{.}

Then, simplify the complex fractions by multiplying top and bottom by \displaystyle -i (the denominator's complex conjugate),

\displaystyle \begin{align}

i\Bigl(z^2+\frac{(2+3i)\cdot (-i)}{i\cdot (-i)}z-\frac{1\cdot (-i)}{i\cdot (-i)}\Bigr) &= i\Bigl(z^2+\frac{-2i+3}{1}z-\frac{-i}{1}\Bigr)\\[5pt] &= i\bigl(z^2+(3-2i)z+i\bigr)\,\textrm{.} \end{align}

Now we are ready to complete the square of the second-degree expression inside the bracket,

\displaystyle \begin{align}

i\bigl(z^2+(3-2i)z+i\bigr) &= i\Bigl(\Bigl(z+\frac{3-2i}{2}\Bigr)^2 - \Bigl(\frac{3-2i}{2}\Bigr)^2+i\Bigr)\\[5pt] &= i\bigl(\bigl(z+\tfrac{3}{2}-i\bigr)^2 - \bigl(\tfrac{3}{2}-i\bigr)^2+i\bigr)\\[5pt] &= i\bigl(\bigl(z+\tfrac{3}{2}-i\bigr)^2-\tfrac{9}{4}+3i-i^2+i\bigr)\\[5pt] &= i\bigl(\bigl(z+\tfrac{3}{2}-i\bigr)^2-\frac{5}{4}+4i\bigr)\\[5pt] &= i\bigl(z+\tfrac{3}{2}-i\bigr)^2-\tfrac{5}{4}i+4i^2\\[5pt] &= i\bigl(z+\tfrac{3}{2}-i\bigr)^2-4-\tfrac{5}{4}i\,\textrm{.} \end{align}