Solution 3.3:3c

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
Current revision (13:45, 30 October 2008) (edit) (undo)
m
 
Line 1: Line 1:
If we take the minus sign out in front of the whole expression,
If we take the minus sign out in front of the whole expression,
-
 
+
{{Displayed math||<math>-\bigl(z^2+2iz-4z-1\bigr)\,,</math>}}
-
<math>-\left( z^{2}+2iz-4z-1 \right)</math>
+
-
 
+
and collect together the first-degree terms,
and collect together the first-degree terms,
 +
{{Displayed math||<math>-\bigl(z^2+(-4+2i)z-1\bigr)\,,</math>}}
-
<math>-\left( z^{2}+\left( -4+2i \right)z-1 \right)</math>
+
we can then complete the square of the expression inside the outer bracket,
-
 
+
-
 
+
-
we can then complete the square of the expression inside the outer bracket
+
-
 
+
-
 
+
-
<math>\begin{align}
+
{{Displayed math||<math>\begin{align}
-
& -\left( z^{2}+\left( -4+2i \right)z-1 \right)=-\left( \left( z+\frac{-4+2i}{2} \right)^{2}-\left( \frac{-4+2i}{2} \right)^{2}-1 \right) \\
+
-\bigl(z^2+(-4+2i)z-1\bigr)
-
& =-\left( \left( z-2+i \right)^{2}-\left( -2+i \right)^{2}-1 \right) \\
+
&= -\Bigl(\Bigl(z+\frac{-4+2i}{2}\Bigr)^2-\Bigl(\frac{-4+2i}{2}\Bigr)^2-1\Bigr)\\[5pt]
-
& =-\left( \left( z-2+i \right)^{2}-\left( -2 \right)^{2}+4i-i^{2}-1 \right) \\
+
&= -\bigl((z-2+i)^2-(-2+i)^2-1\bigr)\\[5pt]
-
& =-\left( \left( z-2+i \right)^{2}-4+4i+1-1 \right) \\
+
&= -\bigl((z-2+i)^2-(-2)^2+4i-i^2-1\bigr)\\[5pt]
-
& =-\left( \left( z-2+i \right)^{2}-4+4i \right) \\
+
&= -\bigl((z-2+i)^2-4+4i+1-1\bigr)\\[5pt]
-
& =-\left( z-2+i \right)^{2}+4-4i. \\
+
&= -\bigl((z-2+i)^2-4+4i\bigr)\\[5pt]
-
\end{align}</math>
+
&= -(z-2+i)^2+4-4i\,\textrm{.}
 +
\end{align}</math>}}

Current revision

If we take the minus sign out in front of the whole expression,

\displaystyle -\bigl(z^2+2iz-4z-1\bigr)\,,

and collect together the first-degree terms,

\displaystyle -\bigl(z^2+(-4+2i)z-1\bigr)\,,

we can then complete the square of the expression inside the outer bracket,

\displaystyle \begin{align}

-\bigl(z^2+(-4+2i)z-1\bigr) &= -\Bigl(\Bigl(z+\frac{-4+2i}{2}\Bigr)^2-\Bigl(\frac{-4+2i}{2}\Bigr)^2-1\Bigr)\\[5pt] &= -\bigl((z-2+i)^2-(-2+i)^2-1\bigr)\\[5pt] &= -\bigl((z-2+i)^2-(-2)^2+4i-i^2-1\bigr)\\[5pt] &= -\bigl((z-2+i)^2-4+4i+1-1\bigr)\\[5pt] &= -\bigl((z-2+i)^2-4+4i\bigr)\\[5pt] &= -(z-2+i)^2+4-4i\,\textrm{.} \end{align}