Solution 3.3:3c

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
m (Lösning 3.3:3c moved to Solution 3.3:3c: Robot: moved page)
Current revision (13:45, 30 October 2008) (edit) (undo)
m
 
(One intermediate revision not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
If we take the minus sign out in front of the whole expression,
-
<center> [[Image:3_3_3c.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>-\bigl(z^2+2iz-4z-1\bigr)\,,</math>}}
 +
 
 +
and collect together the first-degree terms,
 +
 
 +
{{Displayed math||<math>-\bigl(z^2+(-4+2i)z-1\bigr)\,,</math>}}
 +
 
 +
we can then complete the square of the expression inside the outer bracket,
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
-\bigl(z^2+(-4+2i)z-1\bigr)
 +
&= -\Bigl(\Bigl(z+\frac{-4+2i}{2}\Bigr)^2-\Bigl(\frac{-4+2i}{2}\Bigr)^2-1\Bigr)\\[5pt]
 +
&= -\bigl((z-2+i)^2-(-2+i)^2-1\bigr)\\[5pt]
 +
&= -\bigl((z-2+i)^2-(-2)^2+4i-i^2-1\bigr)\\[5pt]
 +
&= -\bigl((z-2+i)^2-4+4i+1-1\bigr)\\[5pt]
 +
&= -\bigl((z-2+i)^2-4+4i\bigr)\\[5pt]
 +
&= -(z-2+i)^2+4-4i\,\textrm{.}
 +
\end{align}</math>}}

Current revision

If we take the minus sign out in front of the whole expression,

\displaystyle -\bigl(z^2+2iz-4z-1\bigr)\,,

and collect together the first-degree terms,

\displaystyle -\bigl(z^2+(-4+2i)z-1\bigr)\,,

we can then complete the square of the expression inside the outer bracket,

\displaystyle \begin{align}

-\bigl(z^2+(-4+2i)z-1\bigr) &= -\Bigl(\Bigl(z+\frac{-4+2i}{2}\Bigr)^2-\Bigl(\frac{-4+2i}{2}\Bigr)^2-1\Bigr)\\[5pt] &= -\bigl((z-2+i)^2-(-2+i)^2-1\bigr)\\[5pt] &= -\bigl((z-2+i)^2-(-2)^2+4i-i^2-1\bigr)\\[5pt] &= -\bigl((z-2+i)^2-4+4i+1-1\bigr)\\[5pt] &= -\bigl((z-2+i)^2-4+4i\bigr)\\[5pt] &= -(z-2+i)^2+4-4i\,\textrm{.} \end{align}