Solution 3.3:2b

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
m (Robot: Automated text replacement (-[[Bild: +[[Image:))
Current revision (12:13, 30 October 2008) (edit) (undo)
m
 
(3 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
The equation <math>z^3=-1</math> is a so-called binomial equation, which we solve by writing both sides in polar form. We have
-
<center> [[Image:3_3_2b-1(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>\begin{align}
-
{{NAVCONTENT_START}}
+
z &= r(\cos\alpha + i\sin\alpha)\,,\\[5pt]
-
<center> [[Image:3_3_2b-2(2).gif]] </center>
+
-1 &= 1\,(\cos\pi + i\sin\pi)\,,
-
{{NAVCONTENT_STOP}}
+
\end{align}</math>}}
 +
 
 +
and, with the help of de Moivre's formula, the equation becomes
 +
 
 +
{{Displayed math||<math>r^3(\cos 3\alpha + i\sin 3\alpha) = 1\,(\cos\pi + i\sin\pi)\,\textrm{.}</math>}}
 +
 
 +
Both sides are equal when their magnitudes are equal and the arguments differ by a multiple of <math>2\pi</math>,
 +
 
 +
{{Displayed math||<math>\left\{\begin{align}
 +
r^3 &= 1\,,\\[5pt]
 +
3\alpha &= \pi + 2n\pi\,,\quad\text{(n is an arbitrary integer),}
 +
\end{align}\right.</math>}}
 +
 +
which gives that
 +
 
 +
{{Displayed math||<math>\left\{\begin{align}
 +
r &= 1\,\\[5pt]
 +
\alpha &= \frac{\pi}{3}+\frac{2n\pi}{3}\quad\text{(n is an arbitrary integer).}
 +
\end{align}\right.</math>}}
 +
 
 +
For every third integer <math>n</math>, the solution formula gives in principal the same value for the argument (the difference is a multiple of <math>2\pi</math>), so the equation has in reality three solutions (for <math>n=0</math>, <math>1</math> and <math>\text{2}</math>),
 +
 
 +
{{Displayed math||<math>z=\left\{\begin{align}
 +
&1\cdot \Bigl(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\Bigr)\\[5pt]
 +
&1\cdot \Bigl(\cos\pi + i\sin\pi\Bigr)\\[5pt]
 +
&1\cdot \Bigl(\cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3}\Bigr)
 +
\end{align}\right.
 +
=
 +
\left\{\begin{align}
 +
&\frac{1+i\sqrt{3}}{2}\,,\\[5pt]
 +
&-1\vphantom{\bigl(}\,,\\[5pt]
 +
&\frac{1-i\sqrt{3}}{2}\,\textrm{.}
 +
\end{align} \right.</math>}}
 +
 
 +
We obtain the typical behaviour that the solutions are corner points in a regular polygon (a triangle in this case because the degree of the equation is 3.
 +
 
 +
[[Image:3_3_2_b.gif|center]]

Current revision

The equation \displaystyle z^3=-1 is a so-called binomial equation, which we solve by writing both sides in polar form. We have

\displaystyle \begin{align}

z &= r(\cos\alpha + i\sin\alpha)\,,\\[5pt] -1 &= 1\,(\cos\pi + i\sin\pi)\,, \end{align}

and, with the help of de Moivre's formula, the equation becomes

\displaystyle r^3(\cos 3\alpha + i\sin 3\alpha) = 1\,(\cos\pi + i\sin\pi)\,\textrm{.}

Both sides are equal when their magnitudes are equal and the arguments differ by a multiple of \displaystyle 2\pi,

\displaystyle \left\{\begin{align}

r^3 &= 1\,,\\[5pt] 3\alpha &= \pi + 2n\pi\,,\quad\text{(n is an arbitrary integer),} \end{align}\right.

which gives that

\displaystyle \left\{\begin{align}

r &= 1\,\\[5pt] \alpha &= \frac{\pi}{3}+\frac{2n\pi}{3}\quad\text{(n is an arbitrary integer).} \end{align}\right.

For every third integer \displaystyle n, the solution formula gives in principal the same value for the argument (the difference is a multiple of \displaystyle 2\pi), so the equation has in reality three solutions (for \displaystyle n=0, \displaystyle 1 and \displaystyle \text{2}),

\displaystyle z=\left\{\begin{align}

&1\cdot \Bigl(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\Bigr)\\[5pt] &1\cdot \Bigl(\cos\pi + i\sin\pi\Bigr)\\[5pt] &1\cdot \Bigl(\cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3}\Bigr) \end{align}\right. = \left\{\begin{align} &\frac{1+i\sqrt{3}}{2}\,,\\[5pt] &-1\vphantom{\bigl(}\,,\\[5pt] &\frac{1-i\sqrt{3}}{2}\,\textrm{.} \end{align} \right.

We obtain the typical behaviour that the solutions are corner points in a regular polygon (a triangle in this case because the degree of the equation is 3.