Solution 3.3:1c

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
m (Robot: Automated text replacement (-[[Bild: +[[Image:))
Current revision (09:06, 30 October 2008) (edit) (undo)
m
 
(3 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
The calculation follows a fairly set pattern. We write the number <math>4\sqrt{3}-4i</math> in polar form and then use de Moivre's formula.
-
<center> [[Image:3_3_1c.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
<center>[[Image:3_3_1_c.gif]] [[Image:3_3_1_c_text.gif]]</center>
 +
 
 +
This gives
 +
 
 +
{{Displayed math||<math>4\sqrt{3}-4i = 8\Bigl(\cos\Bigl(-\frac{\pi}{6}\Bigr) + i\sin\Bigl(-\frac{\pi}{6}\Bigr)\Bigr)</math>}}
 +
 
 +
and then we get, on using de Moivre's formula,
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
\bigl(4\sqrt{3}-4i\bigr)^{22}
 +
&= 8^{22}\Bigl(\cos\Bigl(22\cdot\Bigl(-\frac{\pi}{6}\Bigr)\Bigr) + i\sin\Bigl(22\cdot\Bigl(-\frac{\pi}{6}\Bigr)\Bigr)\Bigr)\\[5pt]
 +
&= \bigl(2^3\bigr)^{22}\Bigl(\cos\Bigl(-\frac{11\pi}{3}\Bigr) + i\sin\Bigl(-\frac{11\pi}{3}\Bigr)\Bigr)\\[5pt]
 +
&= 2^{3\cdot 22}\Bigl(\cos\Bigl(-\frac{12\pi -\pi }{3}\Bigr) + i\sin\Bigl(-\frac{12\pi -\pi}{3}\Bigr)\Bigr)\\[5pt]
 +
&= 2^{66}\Bigl(\cos\Bigl(-4\pi+\frac{\pi}{3}\Bigr) + i\sin\Bigl(-4\pi+\frac{\pi}{3} \Bigr)\Bigr)\\[5pt]
 +
&= 2^{66}\Bigl(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\Bigr)\\[5pt]
 +
&= 2^{66}\Bigl(\frac{1}{2} + i\frac{\sqrt{3}}{2}\Bigr)\\[5pt]
 +
&= 2^{65}(1+i\sqrt{3}\,)\,\textrm{.}
 +
\end{align}</math>}}

Current revision

The calculation follows a fairly set pattern. We write the number \displaystyle 4\sqrt{3}-4i in polar form and then use de Moivre's formula.

Image:3_3_1_c.gif Image:3_3_1_c_text.gif

This gives

\displaystyle 4\sqrt{3}-4i = 8\Bigl(\cos\Bigl(-\frac{\pi}{6}\Bigr) + i\sin\Bigl(-\frac{\pi}{6}\Bigr)\Bigr)

and then we get, on using de Moivre's formula,

\displaystyle \begin{align}

\bigl(4\sqrt{3}-4i\bigr)^{22} &= 8^{22}\Bigl(\cos\Bigl(22\cdot\Bigl(-\frac{\pi}{6}\Bigr)\Bigr) + i\sin\Bigl(22\cdot\Bigl(-\frac{\pi}{6}\Bigr)\Bigr)\Bigr)\\[5pt] &= \bigl(2^3\bigr)^{22}\Bigl(\cos\Bigl(-\frac{11\pi}{3}\Bigr) + i\sin\Bigl(-\frac{11\pi}{3}\Bigr)\Bigr)\\[5pt] &= 2^{3\cdot 22}\Bigl(\cos\Bigl(-\frac{12\pi -\pi }{3}\Bigr) + i\sin\Bigl(-\frac{12\pi -\pi}{3}\Bigr)\Bigr)\\[5pt] &= 2^{66}\Bigl(\cos\Bigl(-4\pi+\frac{\pi}{3}\Bigr) + i\sin\Bigl(-4\pi+\frac{\pi}{3} \Bigr)\Bigr)\\[5pt] &= 2^{66}\Bigl(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\Bigr)\\[5pt] &= 2^{66}\Bigl(\frac{1}{2} + i\frac{\sqrt{3}}{2}\Bigr)\\[5pt] &= 2^{65}(1+i\sqrt{3}\,)\,\textrm{.} \end{align}