Solution 3.1:1d
From Förberedande kurs i matematik 2
(Difference between revisions)
m (Lösning 3.1:1d moved to Solution 3.1:1d: Robot: moved page) |
m |
||
(One intermediate revision not shown.) | |||
Line 1: | Line 1: | ||
- | {{ | + | We expand the expression by multiplying each term in the first bracket with every term in the second bracket, |
- | < | + | |
- | {{ | + | {{Displayed math||<math>\begin{align} |
+ | (3-2i)(7+5i) | ||
+ | &= 3\cdot 7 + 3 \cdot 5i + \cdots\\[5pt] | ||
+ | &= 3\cdot 7 + 3 \cdot 5i - 2i\cdot 7 - 2i \cdot 5i\,\textrm{.} | ||
+ | \end{align}</math>}} | ||
+ | |||
+ | Then, we use that <math>i^2=-1</math> and write the real and imaginary parts together, | ||
+ | |||
+ | {{Displayed math||<math>\begin{align} | ||
+ | (3-2i)(7+5i) | ||
+ | &=21+15i-14i-10i^2\\[5pt] | ||
+ | &=21+15i-14i-10\cdot(-1)\\[5pt] | ||
+ | &=(21+10)+(15i-14i)\\[5pt] | ||
+ | &=31+(15-14)i\\[5pt] | ||
+ | &=31+i\,\textrm{.} | ||
+ | \end{align}</math>}} |
Current revision
We expand the expression by multiplying each term in the first bracket with every term in the second bracket,
\displaystyle \begin{align}
(3-2i)(7+5i) &= 3\cdot 7 + 3 \cdot 5i + \cdots\\[5pt] &= 3\cdot 7 + 3 \cdot 5i - 2i\cdot 7 - 2i \cdot 5i\,\textrm{.} \end{align} |
Then, we use that \displaystyle i^2=-1 and write the real and imaginary parts together,
\displaystyle \begin{align}
(3-2i)(7+5i) &=21+15i-14i-10i^2\\[5pt] &=21+15i-14i-10\cdot(-1)\\[5pt] &=(21+10)+(15i-14i)\\[5pt] &=31+(15-14)i\\[5pt] &=31+i\,\textrm{.} \end{align} |