Solution 3.2:6d

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
(Ny sida: {{NAVCONTENT_START}} <center> Bild:3_2_6d.gif </center> {{NAVCONTENT_STOP}})
Current revision (13:56, 29 October 2008) (edit) (undo)
m
 
(4 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
We can determine the number's magnitude directly using the distance formula,
-
<center> [[Bild:3_2_6d.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>\begin{align}
 +
\bigl|\sqrt{10}+\sqrt{30}i\bigr|
 +
&= \sqrt{\bigl(\sqrt{10}\,\bigr)^2+\bigl(\sqrt{30}\,\bigr)^2}\\[5pt]
 +
&= \sqrt{10+30}\\[5pt]
 +
&= \sqrt{40}\\[5pt]
 +
&= \sqrt{4\cdot 10}\\[5pt]
 +
&= 2\sqrt{10}\,\textrm{.}
 +
\end{align}</math>}}
 +
 
 +
In addition, the number lies in the first quadrant and we can therefore determine the argument using simple trigonometry.
 +
 
 +
[[Image:3_2_6_d_bild.gif]] [[Image:3_2_6_d_bildtext.gif]]
 +
 
 +
The polar form is
 +
 
 +
{{Displayed math||<math>2\sqrt{10}\Bigl( \cos\frac{\pi}{3} + i\sin\frac{\pi}{3} \Bigr)\,\textrm{.}</math>}}

Current revision

We can determine the number's magnitude directly using the distance formula,

\displaystyle \begin{align}

\bigl|\sqrt{10}+\sqrt{30}i\bigr| &= \sqrt{\bigl(\sqrt{10}\,\bigr)^2+\bigl(\sqrt{30}\,\bigr)^2}\\[5pt] &= \sqrt{10+30}\\[5pt] &= \sqrt{40}\\[5pt] &= \sqrt{4\cdot 10}\\[5pt] &= 2\sqrt{10}\,\textrm{.} \end{align}

In addition, the number lies in the first quadrant and we can therefore determine the argument using simple trigonometry.

Image:3_2_6_d_bild.gif Image:3_2_6_d_bildtext.gif

The polar form is

\displaystyle 2\sqrt{10}\Bigl( \cos\frac{\pi}{3} + i\sin\frac{\pi}{3} \Bigr)\,\textrm{.}