Solution 3.2:6b

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
Current revision (13:14, 29 October 2008) (edit) (undo)
m
 
Line 1: Line 1:
-
If we determine the number's magnitude
+
If we determine the number's magnitude <math>r</math> and argument <math>\alpha </math>, we can write its polar form using the formula
-
<math>r</math>
+
-
and argument
+
-
<math>\alpha </math>, we can write its polar form using the formula
+
 +
{{Displayed math||<math>r(\cos\alpha + i\sin\alpha)\,\textrm{.}</math>}}
-
<math>r\left( \cos \alpha +i\sin \alpha \right)</math>
+
Because the number lies on the imaginary axis, it is possible to write its magnitude and argument directly.
-
 
+
-
 
+
-
Because the number lies on the imaginary axis, it is possible to write its magnitude and argument directly:
+
-
 
+
[[Image:3_2_6_b.gif|center]]
[[Image:3_2_6_b.gif|center]]
- 
The polar form is
The polar form is
-
 
+
{{Displayed math||<math>11\Bigl(\cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2}\Bigr)\,\textrm{.}</math>}}
-
<math>11\left( \cos \frac{3\pi }{2}+i\sin \frac{3\pi }{2} \right)</math>.
+

Current revision

If we determine the number's magnitude \displaystyle r and argument \displaystyle \alpha , we can write its polar form using the formula

\displaystyle r(\cos\alpha + i\sin\alpha)\,\textrm{.}

Because the number lies on the imaginary axis, it is possible to write its magnitude and argument directly.

The polar form is

\displaystyle 11\Bigl(\cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2}\Bigr)\,\textrm{.}