Solution 3.2:5c

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
m (Robot: Automated text replacement (-[[Bild: +[[Image:))
Current revision (12:39, 29 October 2008) (edit) (undo)
m
 
(2 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
Geometrically, the multiplication of two complex numbers means that there magnitudes are multiplied and their arguments are added. The product <math>(\sqrt{3}+i)(1-i)</math> therefore has an argument which is the sum of the argument for the <math>\sqrt{3}+i</math> and <math>1-i</math>, i.e.
-
<center> [[Image:3_2_5c-1(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>\arg \bigl((\sqrt{3}+i)(1-i)\bigr) = \arg (\sqrt{3}+i) + \arg (1-i)\,\textrm{.}</math>}}
-
{{NAVCONTENT_START}}
+
 
-
<center> [[Image:3_2_5c-2(2).gif]] </center>
+
By drawing the factors in the complex plane, we can determine relatively easily the argument using simple trigonometry.
-
{{NAVCONTENT_STOP}}
+
[[Image:3_2_5_c.gif|center]]
[[Image:3_2_5_c.gif|center]]
 +
 +
(Because <math>1-i</math> lies in the fourth quadrant, the argument equals
 +
<math>-\beta</math> and not <math>\beta</math>.)
 +
 +
Hence,
 +
 +
{{Displayed math||<math>\arg \bigl((\sqrt{3}+i)(1-i)\bigr) = \arg (\sqrt{3}+i) + \arg (1-i) = \frac{\pi}{6} - \frac{\pi}{4} = -\frac{\pi}{12}\,\textrm{.}</math>}}
 +
 +
 +
Note: If you prefer to give the argument between <math>0</math> and <math>2\pi </math>, then the answer is
 +
 +
{{Displayed math||<math>-\frac{\pi}{12}+2\pi = \frac{-\pi+24\pi}{12} = \frac{23\pi}{12}\,\textrm{.}</math>}}

Current revision

Geometrically, the multiplication of two complex numbers means that there magnitudes are multiplied and their arguments are added. The product \displaystyle (\sqrt{3}+i)(1-i) therefore has an argument which is the sum of the argument for the \displaystyle \sqrt{3}+i and \displaystyle 1-i, i.e.

\displaystyle \arg \bigl((\sqrt{3}+i)(1-i)\bigr) = \arg (\sqrt{3}+i) + \arg (1-i)\,\textrm{.}

By drawing the factors in the complex plane, we can determine relatively easily the argument using simple trigonometry.

(Because \displaystyle 1-i lies in the fourth quadrant, the argument equals \displaystyle -\beta and not \displaystyle \beta.)

Hence,

\displaystyle \arg \bigl((\sqrt{3}+i)(1-i)\bigr) = \arg (\sqrt{3}+i) + \arg (1-i) = \frac{\pi}{6} - \frac{\pi}{4} = -\frac{\pi}{12}\,\textrm{.}


Note: If you prefer to give the argument between \displaystyle 0 and \displaystyle 2\pi , then the answer is

\displaystyle -\frac{\pi}{12}+2\pi = \frac{-\pi+24\pi}{12} = \frac{23\pi}{12}\,\textrm{.}