Solution 3.2:4b

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
(Ny sida: {{NAVCONTENT_START}} <center> Bild:3_2_4b.gif </center> {{NAVCONTENT_STOP}})
Current revision (11:57, 29 October 2008) (edit) (undo)
m
 
(3 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
We calculate what the expression will be
-
<center> [[Bild:3_2_4b.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>(2-i)+(5+3i) = 2+5+(-1+3)i = 7+2i</math>}}
 +
 
 +
and then calculate the magnitude,
 +
 
 +
{{Displayed math||<math>|7+2i| = \sqrt{7^2+2^2} = \sqrt{49+4} = \sqrt{53}\,\textrm{.}</math>}}
 +
 
 +
 
 +
Note: It is not possible to calculate the magnitude of the terms individually
 +
 
 +
{{Displayed math||<math>|(2-i)+(5+3i)| \ne |2-i| + |5+3i|\,\textrm{.}</math>}}

Current revision

We calculate what the expression will be

\displaystyle (2-i)+(5+3i) = 2+5+(-1+3)i = 7+2i

and then calculate the magnitude,

\displaystyle |7+2i| = \sqrt{7^2+2^2} = \sqrt{49+4} = \sqrt{53}\,\textrm{.}


Note: It is not possible to calculate the magnitude of the terms individually

\displaystyle |(2-i)+(5+3i)| \ne |2-i| + |5+3i|\,\textrm{.}