Solution 3.2:2b

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
Current revision (09:38, 29 October 2008) (edit) (undo)
m
 
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
The inequality <math>0\leq \mathop{\rm Re} z \leq \mathop{\rm Im} z \leq 1</math> is actually several inequalities:
-
The inequality <math>0\leq \mathrm{Re}z \leq \mathrm{Im}z \leq 1</math> is actually several inequalities:
+
-
<math>\begin{align}
+
:*<math>0 \leq \mathop{\rm Re} z \leq 1\,</math>,
-
0 &\leq \mathrm{Re}z \leq 1,\\
+
:*<math>0 \leq \mathop{\rm Im}z \leq 1\,</math>,
-
0 &\leq \mathrm{Im}z \leq 1,\end{align}</math>
+
:*<math>\mathop{\rm Re}z \leq \mathop{\rm Im}z\,\textrm{.}</math>
-
 
+
-
<math>\mathrm{Re}z \leq \mathrm{Im}z
+
-
</math>.
+
The first two inequalities in this list define the unit square in the complex number plane.
The first two inequalities in this list define the unit square in the complex number plane.
Line 13: Line 9:
[[Image:3_2_2_b1.gif|center]]
[[Image:3_2_2_b1.gif|center]]
-
The last inequality says that the real part of <math>z</math> should be less than or equal to the imaginary part of <math>z</math>, I.e. <math>z</math> should lie to the left of the line <math>y=x</math> if <math>x=\mathrm{Re} z</math> and <math>y = \mathrm{Im} z</math>.
+
The last inequality says that the real part of <math>z</math> should be less than or equal to the imaginary part of <math>z</math>, i.e. <math>z</math> should lie to the left of the line <math>y=x</math> if <math>x=\mathop{\rm Re} z</math> and <math>y = \mathop{\rm Im} z</math>.
[[Image:3_2_2_b2.gif|center]]
[[Image:3_2_2_b2.gif|center]]
Line 20: Line 16:
[[Image:3_2_2_b3.gif|center]]
[[Image:3_2_2_b3.gif|center]]
-
 
-
{{NAVCONTENT_STOP}}
 

Current revision

The inequality \displaystyle 0\leq \mathop{\rm Re} z \leq \mathop{\rm Im} z \leq 1 is actually several inequalities:

  • \displaystyle 0 \leq \mathop{\rm Re} z \leq 1\,,
  • \displaystyle 0 \leq \mathop{\rm Im}z \leq 1\,,
  • \displaystyle \mathop{\rm Re}z \leq \mathop{\rm Im}z\,\textrm{.}

The first two inequalities in this list define the unit square in the complex number plane.

The last inequality says that the real part of \displaystyle z should be less than or equal to the imaginary part of \displaystyle z, i.e. \displaystyle z should lie to the left of the line \displaystyle y=x if \displaystyle x=\mathop{\rm Re} z and \displaystyle y = \mathop{\rm Im} z.

All together, the inequalities define the region which the unit square and the half-plane have in common: a triangle with corner points at \displaystyle 0, \displaystyle i and \displaystyle 1+i.