Solution 3.2:1d
From Förberedande kurs i matematik 2
(Difference between revisions)
(Ny sida: {{NAVCONTENT_START}} <center> Bild:3_2_1d-1(2).gif </center> {{NAVCONTENT_STOP}} {{NAVCONTENT_START}} <center> Bild:3_2_1d-2(2).gif </center> {{NAVCONTENT_STOP}}) |
m |
||
(4 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | {{ | + | If we calculate the expression, we get the answer at once, |
- | + | ||
- | { | + | {{Displayed math||<math>\begin{align} |
- | { | + | z-\bar{w}+u |
- | <center> [[ | + | &= (2+i)-(2-3i)+(-1-2i)\\[5pt] |
- | + | &= 2-2-1+(1+3-2)i\\[5pt] | |
+ | &= -1+2i\,\textrm{.} | ||
+ | \end{align}</math>}} | ||
+ | |||
+ | If, on the other hand, we interpret the expression in terms of vectors, we must first understand the vector <math>\bar{w}</math> geometrically. When we take the complex conjugate of <math>w</math>, we change the sign of the imaginary part, which is the same as reflecting <math>w</math> in the real axis. | ||
+ | |||
+ | [[Image:3_2_1_d1.gif|center]] | ||
+ | |||
+ | We can then construct the expression <math>z-\bar{w}+u</math> one term at a time. | ||
+ | |||
+ | [[Image:3_2_1d-2(2).gif|center]] |
Current revision
If we calculate the expression, we get the answer at once,
\displaystyle \begin{align}
z-\bar{w}+u &= (2+i)-(2-3i)+(-1-2i)\\[5pt] &= 2-2-1+(1+3-2)i\\[5pt] &= -1+2i\,\textrm{.} \end{align} |
If, on the other hand, we interpret the expression in terms of vectors, we must first understand the vector \displaystyle \bar{w} geometrically. When we take the complex conjugate of \displaystyle w, we change the sign of the imaginary part, which is the same as reflecting \displaystyle w in the real axis.
We can then construct the expression \displaystyle z-\bar{w}+u one term at a time.