Solution 3.2:1b
From Förberedande kurs i matematik 2
(Difference between revisions)
m (Lösning 3.2:1b moved to Solution 3.2:1b: Robot: moved page) |
m |
||
(One intermediate revision not shown.) | |||
Line 1: | Line 1: | ||
- | + | We can easily calculate <math>z+u</math> and <math>z-u</math>, | |
- | < | + | |
- | + | ||
- | + | ||
- | < | + | |
- | + | ||
+ | {{Displayed math||<math>\begin{align} | ||
+ | z+u &= 2+i+(-1-2i) = 2-1+(1-2)i = 1-i,\\[5pt] | ||
+ | z-u &= 2+i-(-1-2i) = 2+1+(1+2)i = 3+3i, | ||
+ | \end{align}</math>}} | ||
+ | |||
+ | and then mark them on the complex plane. | ||
+ | |||
+ | An alternative is to view <math>z</math> and <math>u</math> as vectors and <math>z+u</math> as a vector addition of <math>z</math> and <math>u</math>. | ||
[[Image:3_2_1_b1.gif|center]] | [[Image:3_2_1_b1.gif|center]] | ||
+ | |||
+ | We can either view the vector subtraction <math>z-u</math> as <math>z+(-u)</math>, | ||
[[Image:3_2_1_b2.gif|center]] | [[Image:3_2_1_b2.gif|center]] | ||
+ | |||
+ | or interpret <math>z-u</math> from the vector relation | ||
+ | |||
+ | {{Displayed math||<math>z=(z-u)+u\,,</math>}} | ||
+ | |||
+ | i.e. <math>z-u</math> is the vector we add to <math>u</math> to arrive at <math>z</math>. | ||
[[Image:3_2_1_b3.gif|center]] | [[Image:3_2_1_b3.gif|center]] |
Current revision
We can easily calculate \displaystyle z+u and \displaystyle z-u,
\displaystyle \begin{align}
z+u &= 2+i+(-1-2i) = 2-1+(1-2)i = 1-i,\\[5pt] z-u &= 2+i-(-1-2i) = 2+1+(1+2)i = 3+3i, \end{align} |
and then mark them on the complex plane.
An alternative is to view \displaystyle z and \displaystyle u as vectors and \displaystyle z+u as a vector addition of \displaystyle z and \displaystyle u.
We can either view the vector subtraction \displaystyle z-u as \displaystyle z+(-u),
or interpret \displaystyle z-u from the vector relation
\displaystyle z=(z-u)+u\,, |
i.e. \displaystyle z-u is the vector we add to \displaystyle u to arrive at \displaystyle z.