Solution 2.3:2c

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
(Ny sida: {{NAVCONTENT_START}} <center> Bild:2_3_2c.gif </center> {{NAVCONTENT_STOP}})
Current revision (08:59, 29 October 2008) (edit) (undo)
m
 
(3 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
If we use the definition of <math>\tan x</math> and write the integral as
-
<center> [[Bild:2_3_2c.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>\int\tan x\,dx = \int\frac{\sin x}{\cos x}\,dx</math>}}
 +
 
 +
we see that the numerator <math>\sin x</math> is the derivative of the denominator (apart from the minus sign). Hence, the substitution <math>u=\cos x</math> will work,
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
\int\frac{\sin x}{\cos x}\,dx
 +
&= \left\{\begin{align}
 +
u &= \cos x\\[5pt]
 +
du &= (\cos x)'\,dx = -\sin x\,dx
 +
\end{align}\right\}\\[5pt]
 +
&= -\int\frac{du}{u}\\[5pt]
 +
&= -\ln |u| + C\\[5pt]
 +
&= -\ln |\cos x| + C\,\textrm{.}
 +
\end{align}</math>}}
 +
 
 +
 
 +
Note: <math>-\ln \left| \cos x \right|+C</math> is only a primitive function in intervals in which <math>\cos x\ne 0</math>.

Current revision

If we use the definition of \displaystyle \tan x and write the integral as

\displaystyle \int\tan x\,dx = \int\frac{\sin x}{\cos x}\,dx

we see that the numerator \displaystyle \sin x is the derivative of the denominator (apart from the minus sign). Hence, the substitution \displaystyle u=\cos x will work,

\displaystyle \begin{align}

\int\frac{\sin x}{\cos x}\,dx &= \left\{\begin{align} u &= \cos x\\[5pt] du &= (\cos x)'\,dx = -\sin x\,dx \end{align}\right\}\\[5pt] &= -\int\frac{du}{u}\\[5pt] &= -\ln |u| + C\\[5pt] &= -\ln |\cos x| + C\,\textrm{.} \end{align}


Note: \displaystyle -\ln \left| \cos x \right|+C is only a primitive function in intervals in which \displaystyle \cos x\ne 0.