Solution 2.3:1b

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
m (Lösning 2.3:1b moved to Solution 2.3:1b: Robot: moved page)
Current revision (08:13, 29 October 2008) (edit) (undo)
m
 
(One intermediate revision not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
If we look at the formula for integration by parts,
-
<center> [[Image:2_3_1b.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>\int f(x)g(x)\,dx = F(x)g(x) - \int F(x)g'(x)\,dx\,,</math>}}
 +
 
 +
we see that if we choose <math>f(x)=\sin x</math> and <math>g(x)=x+1</math>, then the factor <math>g(x)</math> will be differentiated to a constant on the right-hand side of the integral. Naturally, this presupposes that we can find a primitive function for <math>f(x)</math> (which we can) and that we can then integrate it. Let's try!
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
\int (x+1)\sin x\,dx
 +
&= (x+1)\cdot (-\cos x) - \int 1\cdot (-\cos x)\,dx\\[5pt]
 +
&= -(x+1)\cos x + \int \cos x\,dx\\[5pt]
 +
&= -(x+1)\cos x + \sin x + C\,\textrm{.}
 +
\end{align}</math>}}

Current revision

If we look at the formula for integration by parts,

\displaystyle \int f(x)g(x)\,dx = F(x)g(x) - \int F(x)g'(x)\,dx\,,

we see that if we choose \displaystyle f(x)=\sin x and \displaystyle g(x)=x+1, then the factor \displaystyle g(x) will be differentiated to a constant on the right-hand side of the integral. Naturally, this presupposes that we can find a primitive function for \displaystyle f(x) (which we can) and that we can then integrate it. Let's try!

\displaystyle \begin{align}

\int (x+1)\sin x\,dx &= (x+1)\cdot (-\cos x) - \int 1\cdot (-\cos x)\,dx\\[5pt] &= -(x+1)\cos x + \int \cos x\,dx\\[5pt] &= -(x+1)\cos x + \sin x + C\,\textrm{.} \end{align}