Solution 2.2:4d

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
m (Lösning 2.2:4d moved to Solution 2.2:4d: Robot: moved page)
Current revision (15:36, 28 October 2008) (edit) (undo)
m
 
(One intermediate revision not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
The integral can be simplified by a so-called polynomial division. We add and take away 1 in the numerator and can thus eliminate the <math>x^2</math>-term from the numerator
-
<center> [[Image:2_2_4d.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>\frac{x^2}{x^{2}+1} = \frac{x^2+1-1}{x^2+1} = \frac{x^2+1}{x^2+1} - \frac{1}{x^2+1} = 1-\frac{1}{x^2+1}\,\textrm{.}</math>}}
 +
 
 +
Thus, we have
 +
 
 +
{{Displayed math||<math>\int\frac{x^2}{x^2+1}\,dx = \int\Bigl(1-\frac{1}{x^2+1} \Bigr)\,dx = x-\arctan x+C\,\textrm{.}</math>}}

Current revision

The integral can be simplified by a so-called polynomial division. We add and take away 1 in the numerator and can thus eliminate the \displaystyle x^2-term from the numerator

\displaystyle \frac{x^2}{x^{2}+1} = \frac{x^2+1-1}{x^2+1} = \frac{x^2+1}{x^2+1} - \frac{1}{x^2+1} = 1-\frac{1}{x^2+1}\,\textrm{.}

Thus, we have

\displaystyle \int\frac{x^2}{x^2+1}\,dx = \int\Bigl(1-\frac{1}{x^2+1} \Bigr)\,dx = x-\arctan x+C\,\textrm{.}