Solution 2.2:4b

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
m (Lösning 2.2:4b moved to Solution 2.2:4b: Robot: moved page)
Current revision (15:15, 28 October 2008) (edit) (undo)
m
 
(One intermediate revision not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
We could substitute <math>u=x-1</math>, but we would then still have the problem of the second term, 3, in the denominator. Instead, we take out a factor 3 from the denominator,
-
<center> [[Image:2_2_4b-1(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>\begin{align}
-
{{NAVCONTENT_START}}
+
\int \frac{dx}{(x-1)^2+3}
-
<center> [[Image:2_2_4b-2(2).gif]] </center>
+
&= \int \frac{dx}{3\bigl(\tfrac{1}{3}(x-1)^2+1\bigr)}\\[5pt]
-
{{NAVCONTENT_STOP}}
+
&= \frac{1}{3}\int \frac{dx}{\tfrac{1}{3}(x-1)^2+1}
 +
\end{align}</math>}}
 +
 
 +
and move a factor <math>\tfrac{1}{3}</math> into the square <math>(x-1)^2</math>,
 +
 
 +
{{Displayed math||<math>\frac{1}{3}\int \frac{dx}{\tfrac{1}{3}(x-1)^2+1} = \frac{1}{3}\int \frac{dx}{\Bigl(\dfrac{x-1}{\sqrt{3}}\Bigr)^2+1}\,\textrm{.}</math>}}
 +
 
 +
Now, we substitute <math>u = (x-1)/\!\sqrt{3}</math> and get rid of all the problems at once,
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
\frac{1}{3}\int \frac{dx}{\Bigl(\dfrac{x-1}{\sqrt{3}}\Bigr)^2+1}
 +
&= \left\{\begin{align}
 +
u &= (x-1)/\!\sqrt{3}\\[5pt]
 +
du &= dx/\!\sqrt{3}
 +
\end{align}\right\}\\[5pt]
 +
&= \frac{1}{3}\int \frac{\sqrt{3}\,du}{u^2+1}\\[5pt]
 +
&= \frac{\sqrt{3}}{3}\int \frac{du}{u^2+1}\\[5pt]
 +
&= \frac{1}{\sqrt{3}}\arctan u + C\\[5pt]
 +
&= \frac{1}{\sqrt{3}}\arctan \frac{x-1}{\sqrt{3}} + C\,\textrm{.}
 +
\end{align}</math>}}

Current revision

We could substitute \displaystyle u=x-1, but we would then still have the problem of the second term, 3, in the denominator. Instead, we take out a factor 3 from the denominator,

\displaystyle \begin{align}

\int \frac{dx}{(x-1)^2+3} &= \int \frac{dx}{3\bigl(\tfrac{1}{3}(x-1)^2+1\bigr)}\\[5pt] &= \frac{1}{3}\int \frac{dx}{\tfrac{1}{3}(x-1)^2+1} \end{align}

and move a factor \displaystyle \tfrac{1}{3} into the square \displaystyle (x-1)^2,

\displaystyle \frac{1}{3}\int \frac{dx}{\tfrac{1}{3}(x-1)^2+1} = \frac{1}{3}\int \frac{dx}{\Bigl(\dfrac{x-1}{\sqrt{3}}\Bigr)^2+1}\,\textrm{.}

Now, we substitute \displaystyle u = (x-1)/\!\sqrt{3} and get rid of all the problems at once,

\displaystyle \begin{align}

\frac{1}{3}\int \frac{dx}{\Bigl(\dfrac{x-1}{\sqrt{3}}\Bigr)^2+1} &= \left\{\begin{align} u &= (x-1)/\!\sqrt{3}\\[5pt] du &= dx/\!\sqrt{3} \end{align}\right\}\\[5pt] &= \frac{1}{3}\int \frac{\sqrt{3}\,du}{u^2+1}\\[5pt] &= \frac{\sqrt{3}}{3}\int \frac{du}{u^2+1}\\[5pt] &= \frac{1}{\sqrt{3}}\arctan u + C\\[5pt] &= \frac{1}{\sqrt{3}}\arctan \frac{x-1}{\sqrt{3}} + C\,\textrm{.} \end{align}