Solution 2.2:4a

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
(Ny sida: {{NAVCONTENT_START}} <center> Bild:2_2_4a.gif </center> {{NAVCONTENT_STOP}})
Current revision (15:02, 28 October 2008) (edit) (undo)
m
 
(3 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
What makes our integral differ from that in the exercise´s text is that there is a term <math>x^2+4</math> instead of <math>x^2+1</math>, but if we factor out the 4 from the denominator,
-
<center> [[Bild:2_2_4a.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>\int \frac{dx}{x^2+4} = \int \frac{dx}{4\bigl(\tfrac{1}{4}x^2+1\bigr)} = \frac{1}{4}\int \frac{dx}{\tfrac{1}{4}x^2+1}\,\textrm{,}</math>}}
 +
 
 +
we obtain the correct second term in the denominator. On the other hand, there is no longer <math>x^2</math> but <math>\tfrac{1}{4}x^2</math>, although we can get around this by substituting <math>u=\tfrac{1}{2}x</math>,
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
\frac{1}{4}\int \frac{dx}{\tfrac{1}{4}x^2+1}
 +
&= \frac{1}{4}\int \frac{dx}{(x/2)^2+1}
 +
= \left\{\begin{align}
 +
u &= x/2\\[5pt]
 +
du &= \tfrac{1}{2}\,dx
 +
\end{align}\right\}\\[5pt]
 +
&= \frac{1}{4}\int \frac{2\,du}{u^2+1}
 +
= \frac{1}{2}\int\frac{du}{u^2+1}\\[5pt]
 +
&= \frac{1}{2}\arctan u + C
 +
= \frac{1}{2}\arctan \frac{x}{2} + C\,\textrm{.}
 +
\end{align}</math>}}

Current revision

What makes our integral differ from that in the exercise´s text is that there is a term \displaystyle x^2+4 instead of \displaystyle x^2+1, but if we factor out the 4 from the denominator,

\displaystyle \int \frac{dx}{x^2+4} = \int \frac{dx}{4\bigl(\tfrac{1}{4}x^2+1\bigr)} = \frac{1}{4}\int \frac{dx}{\tfrac{1}{4}x^2+1}\,\textrm{,}

we obtain the correct second term in the denominator. On the other hand, there is no longer \displaystyle x^2 but \displaystyle \tfrac{1}{4}x^2, although we can get around this by substituting \displaystyle u=\tfrac{1}{2}x,

\displaystyle \begin{align}

\frac{1}{4}\int \frac{dx}{\tfrac{1}{4}x^2+1} &= \frac{1}{4}\int \frac{dx}{(x/2)^2+1} = \left\{\begin{align} u &= x/2\\[5pt] du &= \tfrac{1}{2}\,dx \end{align}\right\}\\[5pt] &= \frac{1}{4}\int \frac{2\,du}{u^2+1} = \frac{1}{2}\int\frac{du}{u^2+1}\\[5pt] &= \frac{1}{2}\arctan u + C = \frac{1}{2}\arctan \frac{x}{2} + C\,\textrm{.} \end{align}