Solution 2.2:3d

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
(Ny sida: {{NAVCONTENT_START}} <center> Bild:2_2_3d.gif </center> {{NAVCONTENT_STOP}})
Current revision (14:34, 28 October 2008) (edit) (undo)
m
 
(3 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
Observe that the derivative of the denominator is, for the most part, equal to the numerator,
-
<center> [[Bild:2_2_3d.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>(x^2+2x+2)' = 2x+2 = 2(x+1)</math>}}
 +
 
 +
so we can rewrite the integral as
 +
 
 +
{{Displayed math||<math>\int \frac{\tfrac{1}{2}}{x^2+2x+2}\cdot (x^2+2x+2)'\,dx\,\textrm{.}</math>}}
 +
 
 +
The substitution <math>u=x^2+2x+2</math> will therefore simplify the integral considerably,
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
\int \frac{x+1}{x^2+2x+2}\,dx
 +
&= \left\{\begin{align}
 +
u &= x^2+2x+2\\[5pt]
 +
du &= (x^2+2x+2)'\,dx = 2(x+1)\,dx
 +
\end{align}\right\}\\[5pt]
 +
&= \frac{1}{2}\int \frac{du}{u}\\[5pt]
 +
&= \frac{1}{2}\ln |u| + C\\[5pt]
 +
&= \frac{1}{2}\ln |x^2+2x+2| + C\,\textrm{.}
 +
\end{align}</math>}}
 +
 
 +
 
 +
Note: By completing the square
 +
 
 +
{{Displayed math||<math>x^2+2x+2 = (x+1)^2-1^2+2 = (x+1)^2+1</math>}}
 +
 
 +
we see that <math>x^2+2x+2</math> is always greater than or equal to 1, so we can take away the absolute sign around the argument in <math>\ln</math> and answer with
 +
 
 +
{{Displayed math||<math>\frac{1}{2}\ln (x^2+2x+2) + C\,\textrm{.}</math>}}

Current revision

Observe that the derivative of the denominator is, for the most part, equal to the numerator,

\displaystyle (x^2+2x+2)' = 2x+2 = 2(x+1)

so we can rewrite the integral as

\displaystyle \int \frac{\tfrac{1}{2}}{x^2+2x+2}\cdot (x^2+2x+2)'\,dx\,\textrm{.}

The substitution \displaystyle u=x^2+2x+2 will therefore simplify the integral considerably,

\displaystyle \begin{align}

\int \frac{x+1}{x^2+2x+2}\,dx &= \left\{\begin{align} u &= x^2+2x+2\\[5pt] du &= (x^2+2x+2)'\,dx = 2(x+1)\,dx \end{align}\right\}\\[5pt] &= \frac{1}{2}\int \frac{du}{u}\\[5pt] &= \frac{1}{2}\ln |u| + C\\[5pt] &= \frac{1}{2}\ln |x^2+2x+2| + C\,\textrm{.} \end{align}


Note: By completing the square

\displaystyle x^2+2x+2 = (x+1)^2-1^2+2 = (x+1)^2+1

we see that \displaystyle x^2+2x+2 is always greater than or equal to 1, so we can take away the absolute sign around the argument in \displaystyle \ln and answer with

\displaystyle \frac{1}{2}\ln (x^2+2x+2) + C\,\textrm{.}